Система смазки ДВС

Автомасла и все, что нужно знать о моторных маслах

Система смазки ДВС

Система смазки ДВС предназначена для доставки нужного объема масляных жидкостей в зоны контакта соприкасающихся деталей. Основные функции смазочных материалов – это снижение износа узлов трения с минимальными энергетическими затратами.

Система смазки ДВС

Принцип действия

Система смазки ДВС

Масляная система автомобиля должна принудительно, под давлением, обеспечивать бесперебойную подачу смазочного материала к вращающимся элементам мотора. Давление поступающей смеси должно быть достаточным, чтобы обеспечить стабильное функционирование рабочих механизмов в узлах трения автомобиля.

Моторное масло снижает трение, возникающее между двумя подвижными объектами. Влияние трения можно снизить, если между движущимися плоскостями создать разделительную масляную пленку, которая защитит трущиеся детали от появления чрезмерных механических нагрузок. На величину и прочность защитного слоя влияет форма соприкасающихся деталей и санитарное состояние их поверхностей.

При соблюдении условий эксплуатации двигателя разделительный слой будет иметь достаточную плотность, чтобы предупредить непосредственный контакт поверхностей. Но в условиях экстремальных нагрузок, прочность и толщина пленки может снизиться, и детали начнут соприкасаться. Такие обстоятельства называют граничной смазкой.

Масло, имеющее нормативную вязкость, поможет снизить отрицательный эффект, и предотвратить износ конструкции. Кроме параметров вязкости на качество смазки влияет величина давления масляной жидкости и температурные параметры работы двигателя.

Показатели давления масла

Система смазки ДВС

Стандартную силу давления смазочных жидкостей возможно обеспечить только в случае достаточного объема масляной эмульсии в поддоне агрегата. Проверить уровень жидкости можно посредством металлического щупа, размещенного в направляющей трубке, возле блока цилиндров.

Давление смазки в системе регулируется датчиком, который в случае слабого напора отправляет сигналы электронному манометру, расположенному в салоне автомобиля. Устройство фиксирует и отражает на своей шкале существующую величину давления в системе. Рекомендуемые заводом изготовителем параметры – это 2–4 кг/см 2 .

Низкое давление смазки наблюдается в момент первого запуска и в случае работы мотора на холостом ходу, а высокое – при работе агрегата на повышенных оборотах. Недостаточная плотность смазочной жидкости не позволит сформировать в зонах контакта разделительную пленку, что может привести к интенсивному износу деталей.

Температура масла

Система смазки ДВС

Низкий или высокий температурный режим в любом случае отрицательно сказывается на защитных качествах масла. Холодное масло слишком густое. Это создает определенные трудности при перемещении эмульсии по каналам смазки. Перегретая смесь, наоборот, слишком жидкая для того, чтобы создать на трущихся поверхностях прочную разделительную пленку. Тонкий масляный слой или его отсутствие может привести к износу или поломке двигателя.

Автовладелец может своими силами рассчитать благоприятные термические условия для стабильной работы силового агрегата. Для этого нужно к температуре атмосферного воздуха добавить +60°C. В результате этой операции получаем среднее значение температуры, которое должен фиксировать датчик на приборной панели в салоне автомобиля.

Устройство системы смазки

Система смазки ДВС

Стабильная и бесперебойная подача масляной жидкости к трущимся поверхностям – основное условие, влияющее на долговечность двигателя. По принципу смазывания узлов трения, систему подачи смесей можно разделить на несколько способов:

  • принудительный;
  • разбрызгиванием;
  • комбинированный.

Принудительный способ заключается в доставке масляной жидкости в зоны контакта с помощью масляного насоса, под давлением. Смазка разбрызгиванием происходит посредством специальных форсунок, которые разделяют поток масла на мелкие капли. Капли, в форме масляного тумана, поступают в узлы трения и смазывают соприкасающиеся поверхности.

В современных автомобилях применяется комбинированная система смазки, которая совмещает в себе два предыдущих способа. Подшипники коленчатого и газораспределительного вала, стойки толкателей и коромысла ГРМ – смазываются принудительно. Остальные детали мотора обслуживаются методом разбрызгивания или самотеком.

Независимо от способа подачи смазочных материалов, системы смазки двигателя должны соответствовать следующим требованиям:

  1. Защищать элементы ДВС от преждевременного износа.
  2. Способствовать стабилизации теплового баланса мотора.
  3. Служить гидравлическим уплотнителем для компрессионных колец ЦПГ.
  4. Подавать частицы продуктов трения к фильтру, и выполнять надлежащую очистку загрязненного масла.
  5. Накапливать и удерживать твердые включения в картере двигателя до даты сервисного обслуживания.
  6. Проводить нейтрализацию вредных химических веществ, которые могут появляться в процессе сгорания топлива.
  7. Препятствовать коррозии и ржавлению металлических деталей.
  8. Обеспечивать необходимый объем смазочной жидкости для обслуживания газораспределительного механизма.

В зависимости от способа хранения рабочей жидкости в силовом агрегате, различают 2 вида смазочных систем:

  1. Мокрый картер. В этом случае масло хранится в нижней части мотора (в поддоне).
  2. Сухой картер. Здесь масляная жидкость заливается в отдельно стоящий бак-отстойник, устанавливаемый на некотором отдалении от корпуса агрегата.

Поддон предназначен для хранения и охлаждения масляной жидкости. Внутри картера находится металлическая, горизонтально расположенная перегородка, называемая успокоителем. Успокоитель служит для гашения колебаний масла во время движения автомобиля.

Кожух поддона крепится к нижней части двигателя через пробковый уплотнитель. Внизу корпуса, по центру, расположено сливное резьбовое отверстие со сливной пробкой.

Мокрый картер

Система смазки ДВС

Смазочная жидкость, продвигаясь через заливную горловину и сетчатый фильтровальный элемент, в верхней части клапанной крышки, поступает в картер мотора. Объем жидкости в поддоне проверяется металлическим щупом. В нижней части резервуара присутствует сливная пробка, в теле которой размещен магнитный фильтр, для вывода из загрязненного масла металлических включений. Внутри поддона, внизу, размещается маслоприемник.

Перекачивающее устройство (насос) подает жидкость в корпус фильтра тонкой очистки, а затем в масляную магистраль системы. Жидкость из масляной магистрали поступает в узлы трения, смазывает соприкасающиеся поверхности, и самотеком возвращается в картер двигателя.

Сухой картер

Система смазки ДВС

Система «сухой картер» применяется на автомобилях повышенной проходимости, кроссовых и спортивных моделях. Использование этой техники предусматривает экстремальные режимы вождения, подразумевающие скоростную езду по пересеченной местности, подъем и спуск на крутых склонах, участие в ралли и др.

Такие условия эксплуатации (подъем, спуск, резкие повороты и т.д.) могут вызвать осушение маслоприемника картера, и спровоцировать попадание воздуха в систему смазки. Такая манера езды может послужить причиной кратковременного прекращения подачи масла к подшипникам коленчатого вала, шатунным вкладышам и трущимся поверхностям ГРМ. Для стабилизации смазочного процесса при работе автомобиля в чрезвычайных ситуациях и предусмотрена схема подачи жидкости, называемая «сухой картер».

Емкость для содержания рабочей жидкости у такого типа моделей располагают в самом прохладном месте подкапотного пространства. Во избежание больших колебаний жидкости и ее вспенивания в момент раскачивания машины, в конструкции резервуара предусматривают успокоители смазки. Двигатели внутреннего сгорания при использовании схемы смазки «сухой картер» оборудуются, как минимум, двумя перекачивающими устройствами. Один механизм предназначен для забора смазки из поддона и подачи ее в накопительный резервуар, а второй – для подачи масла в контактные зоны мотора.

Приборы и оборудование

Система смазки ДВС

Все выпускаемые современной автомобильной промышленностью агрегаты оснащаются полно-поточной системой смазки. Ее структура, независимо от схемы подачи масла, предусматривает следующие приборы и механизмы:

  • картер;
  • маслоприемник;
  • масляная магистраль;
  • насос;
  • фильтр;
  • контроллер давления жидкости.

Работа масляного насоса

Система смазки ДВС

Все конструкционные разновидности перекачивающих устройств можно отнести к объемному типу механизмов. Привод помпы осуществляется при помощи зубчатой шестерни, расположенной на коленвале силового агрегата. Каждый оборот коленвала сопровождается подачей равного объема масляной жидкости.

При увеличении частоты оборотов привода – увеличивается количество поступающей в зоны контакта смазки, и повышается плотность в масляных магистралях системы. Перекачивающее оборудование, применяемое в современных моторах, делится на 2 типа – это насосы роторной и шестеренчатой конструкций с внутренней и внешней компоновкой зубьев.

Шестеренчатые модели с наружным зацепом включают в себя чугунный кожух, внутри которого плотно установлены две зубчатые детали. Ведущий орган насоса запрессован на центральном валу механизма. Центральный вал устройства в нижней части снабжен приводной шестерней, которая вступает в зацеп с такой же деталью на коленвалу мотора. С противоположных сторон кожуха находятся всасывающий и выпускной патрубки.

Поступающее во впускной патрубок масло, проходит по впадинам ведущего и ведомого органа механизма. При повороте рабочего вала устройства, выступы и впадины зубьев вступают в зацеп, и жидкость выдавливается из впадин в разгрузочную прорезь на стенках насоса. После этого, жидкость поднимается к выпускному патрубку, откуда перемещается в масляный канал силового агрегата.

Давление, выходящего из кожуха насоса масла, регулируется редукционным перепускным клапаном. Размещается устройство внутри емкости для содержания масляной смеси (поддон), в нижнем отделе блока цилиндров.

Структура перекачивающих устройств с внутренним зацепом рабочих органов состоит:

  • кожух;
  • ведомый элемент
  • ведущий;
  • редукционный клапан;
  • маслоприемник;
  • крышка корпуса.

Чугунный кожух механизма объединяет в себе две камеры – всасывающую и нагнетающую, разделенные небольшим выступом. Крепление ведущей шестерни предусматривается на рабочем валу устройства. В нижней части корпуса крепится маслоприемник с сеточкой. Крышку механизма изготавливают из алюминиевого композита. В крышке находится редукционный клапан с регулирующей пружиной.

При повороте шестерен друг относительно друга масляная жидкость из картера, через приемное устройство, доставляется в рабочую камеру насоса. Затем, при помощи ведомой шестерни жидкость подается в нагнетательный патрубок, откуда поступает в масляную магистраль. Если давление смазочного материала превысит допустимый уровень, срабатывает перепускной клапан и перенаправляет лишнюю смесь во всасывающую область механизма.

Роторный насос состоит из кожуха, внутри которого располагаются две детали – наружное кольцо в форме пятиконечной звезды и центральный вал с четырьмя овальными лопастями (ротор), установленный внутри кольца. За счет разного количества выступов на рабочих элементах насоса в корпусе механизма, во время вращения вала, создается разряжение, которое способствует всасыванию жидкости.

Выдавливание масла из корпуса происходит в момент захода лопасти ротора во впадину наружного кольца. Контроль выходного давления смазочной жидкости, как и в предыдущем варианте, выполняется редукционным клапаном.

В дополнение к масляным насосам в системе смазки предусмотрен маслоприемник, расположенный в нижней части картера двигателя. На входе в приспособление, для очистки масла, устанавливается металлическая сеточка. В зависимости от модели мотора устройства бывают двух видов – плавающие и свободные. Плавающие конструкции могут менять свое место расположения в зависимости от объема жидкости в картере.

Фильтр для масла

Система смазки ДВС

Во время работы мотора происходит загрязнение масла неорганическими взвесями, которые смазочные жидкости должны отводить от трущихся поверхностей и перемещать в поддон двигателя. При повторной подаче смазочного материала в систему смазки субстанции, с помощью фильтрующих элементов, очищают от ненужных включений.

Масляный фильтр устанавливают на напорной магистрали, после перекачивающего устройства. Такая компоновка прибора позволяет гарантировать качество масел, поступающих в рабочие секции двигателя.

Фильтры по принципу действия делятся на приборы тонкой и грубой очистки, а по конструкции внутренней части – на центробежные и щелевые. В щелевых механизмах качество очистки или фракция улавливаемых частиц зависит от величины зазора между рабочими элементами (поры, волокна, пластины).

Если фильтрация масляной жидкости выполняется через один слой материала, то такой способ называют поверхностным. В случае использования плотного фильтра, весь объем которого заполнен поролоном или пористым картоном – объемным.

Для защиты ДВС от пускового износа, и предотвращения риска работы мотора без смазки, фильтрующие элементы оборудуют дренажными клапанами, которые предупреждают самопроизвольный сток масла в поддон двигателя, в момент остановки силового агрегата.

Для грубой очистки масла в систему смазки устанавливают центрифуги. Фильтр состоит из неподвижного корпуса (статора), внутри которого находится подвижный элемент (ротор). Загрязненная смесь поступает в рабочую камеру через отверстия на центральном валу устройства.

При вращении ротора, находящаяся внутри смазка, с силой отбрасывается к стенкам статора, где твердые частицы прилипают к неподвижному кожуху, а очищенное масло, через отверстия в основании фильтра, стекает в поддон. Эффективность центробежного метода фильтрации масла зависит от скорости вращения ротора.

Масляные каналы

Система смазки ДВС

Смазочная жидкость с помощью насоса подается в фильтрующий элемент, из которого, под давлением, поступает в масляные каналы. Масляные каналы представляют собой горизонтально высверленные отверстия, которые пролегают по всей длине двигателя.

Системы смазки рядного агрегата оснащаются одной магистралью, V-образные модели – двумя.

Оборудованные в блоке цилиндров горизонтальные каналы способствуют быстрому поступлению смазочного материала к основным механизмам двигателя.

Таблица вязкости трансмиссионного масла

Дата публикации: 29 марта 2016 .
Категория: Автотехника.

Для полноценной эксплуатации автотранспортного средства используется ряд рабочих смазочных жидкостей, которые позволяют обеспечить исправную работу всех систем машины. Одной из таких систем является трансмиссия, для которой применяется специализированное автомобильное масло. Оно используется для смазки зубчатых соединений, которые есть в ручных КПП, а также для механизмов рулевого управления, ведущих мостов и раздаточных коробок.

Сегодня существует две разновидности «трансмиссионки»:

  • для использования в МКПП (механических коробках передач);
  • для передне- и заднеприводных машин с АКПП (автоматической коробкой передач). Также этот тип масла применяется для гидроусилителей руля (ГУР).
Система смазки ДВССистема смазки ДВС

Вторая категория смазывающих жидкостей позволяет снять механические нагрузки, эффективно смазывает элементы, отводит тепло, продукты коррозии и микро-абразивные частицы в наиболее изношенных частях. Масла для коробок «автоматов» передают механическую энергию во все комплексы гидромеханической трансмиссии. К этой категории смазочных материалов предъявляются самые строгие требования (если сравнивать с маслами для МКПП).

В качестве основы для трансмиссионных масел используются минеральные, синтетические и полусинтетические материалы. Также как и для моторного масла, при выборе «трансмиссионки» учитываются классификации нефтепродуктов исходя из которых можно определить такие показатели, как вязкость и качество смазывающего материала. Рассмотрим эти стандарты подробнее.

Классификация вязкости трансмиссионного масла по SAE

Индекс SAE, указывающий вязкость трансмиссионного масла, был разработан в Американском Обществе Инженеров. Этот стандарт получил широкое распространение по всему миру и сегодня при определении классификации вязкости моторного масла для ведущих мостов и МКПП применяется спецификация SAE J306. По этой квалификации также определяется температурный диапазон, при котором допустимо применение того или иного смазочного материала.

Самая низкая и самая высокая температура, при которой можно эксплуатировать автомобиль имеет свой предел, который оценивается:

  • по температуре, при которой вязкость жидкости по Брукфильду доходит до показателя 150 000 сП (сантипуазов);
  • по температуре, при которой кинематическая вязкость «трансмиссионки» определяется при температуре 100 градусов.

Благодаря этому удается определить нагрузку (приблизительную) с которой сможет справиться защитная масляная пленка.

По стандартам SAE трансмиссионные масла делятся на аналогичные с моторными смазками категории:

  • зимние (W, Winter): 70w, 75w, 80w, 85w;
  • летние (без индекса): 80, 85, 140, 250.

Всесезонные жидкости имеют обе маркировки, например, SAE 75w-85. Такие масла можно использовать на протяжении всего года. Как видите, в этом плане «трансмиссионки» схожи с моторными маслами, но это не означает, что эти нефтепродукты используются в одинаковых условиях и имеют одинаковые показатели. Это же касается и вопросов о том, можно ли заливать «трансмиссионку» в двигатель и наоборот. Моторное масло допустимо использовать для КПП, но трансмиссионную жидкость заливать в мотор нельзя.

Таблица температурных диапазонов окружающего воздуха, в которых можно применять трансмиссионные масла. Указаны наиболее часто применяемые виды масел

Минимальная температура, при которой обеспечивается смазка узлов, °СКласс по SAEМаксимальная температура окружающей среды, °С
-4075W-8035
-4075W-9035
-2680W-8535
-2680W-9035
-1285W-9045

Система смазки ДВС

Классификация вязкости трансмиссионного масла по API

По системе API GL масла подразделяются на классы качеств. Основными признаками классификации являются конструкция и условия работы передачи, дополнительными признаками — содержание противоизносных и противозадирных присадок.

Классификация описана в документе API «Обозначение эксплуатационных смазочных масел для коробок передач ручного управления и для мостов. Публикация API 1560, февраль 1976 г.» (API Publication 1560, Lubricant Service Designation for Automotive Manual Transmissions and Axles, February 1976). Классы качества по API:

  • Масла для передач, работающих в легких условиях.
  • Состоят из базовых масел без присадок. Иногда добавляются в небольшом количестве антиокислительные присадки, ингибиторы коррозии, легкие депрессорные и противопенные присадки.
  • Предназначены для спирально-конусных, червячных передач и механических коробок передач (без синхронизаторов) грузовых автомобилей и сельскохозяйственных машин.
  • Масла для передач, работающих в условиях средней тяжести.
  • Содержат противоизносные присадки.
  • Предназначены для червячных передач транспортных средств.
  • Обычно применяются для смазывания трансмиссии тракторов и сельскохозяйственных машин.
  • Масла для передач, работающих в условиях средней тяжести.
  • Содержат до 2.7% противоизносных присадок.
  • Предназначены для смазывания конусных и других передач грузовых автомобилей.
  • Не предназначены для гипоидных передач.
  • Масла для передач, работающих в условиях разной тяжести — от легких, до тяжелых.
  • Содержат 4,0% эффективных противозадирных присадок.
  • Предназначены для конусных и гипоидных передач, имеющих малое смещение осей, для коробок передач грузовых автомобилей, для агрегатов ведущего моста.
  • Масла API GL-4 предназначены для несинхронизированных коробок передач Североамериканских грузовых автомобилей, тягачей и автобусов (коммерческих автомобилей), для главных и других передач всех автотранспортных средств. В настоящее время эти масла являются основными и для синхронизированных передач, особенно в Европе. В таком случае на этикетке или в листе данных масла должны быть надписи о таком предназначении и подтверждение о соответствии требованиям производителей машин.
  • Масла для наиболее загруженных передач, работающих в суровых условиях.
  • Содержат до 6,5% эффективных противозадирных и других многофункциональных присадок.
  • Основное предназначение — для гипоидных передач, имеющих значительное смещение осей.
  • Применяются как универсальные масла для всех других агрегатов механической трансмиссии (кроме коробки передач).
  • Для синхронизированной механической коробки передач применяются только масла, имеющие специальное подтверждение о соответствии требованиям производителей машин.
  • Могут применяться для дифференциала повышенного трения, если соответствуют требованиям спецификаций MIL-L-2105D (в США) или ZF TE-ML-05 (в Европе). Тогда обозначение класса имеет дополнительные знаки, например, API GL-5+ или API GL-5 SL.
  • Масла для наиболее загруженных передач, работающих в очень тяжелых условиях (большие скорости скольжения и значительные ударные нагрузки).
  • Содержат до 10% высокоэффективных противозадирных присадок.
  • Предназначены для гипоидных передач со значительным смещением осей.
  • Соответствуют наивысшему уровню эксплуатационных свойств.
  • В настоящее время класс GL-6 больше не применяется, так как считается, что класс API GL-5 достаточно хорошо удовлетворяет наиболее строгие требования.

Новые классы API

  • Масла для высоконагруженных агрегатов.
  • Предназначены для несинхронизированных механических коробок передач мощных коммерческих автомобилей (тягачей и автобусов).
  • Эквивалентны маслам API GL-5, но обладают повышенной термической стабильностью.

PG-2 (проект)

  • Масла для передач ведущих мостов мощных коммерческих автомобилей (тягачей и автобусов) и мобильной техники.
  • Эквивалентны маслам API GL-5, но обладают повышенной термической стабильностью и улучшенной совместимостью с эластомерами.

Классификация вязкости трансмиссионного масла по ГОСТ

Система смазки ДВСВ РФ существует своя классификация, которая также применяется при определении характеристик трансмиссионного масла, а именно ГОСТ 17479.2-85, этот стандарт был введен как для моторных масел, так и для «трансмиссионнок». Он включает в себя критерии вязкости, которые делятся на четыре класса: 9, 12, 18 и 34. Также он включает показатель качества нефтепродукта, который делится на пять групп, по градации каждая группа соответствует стандарту качества API, например, ТМ-1 (трансмиссионное масло) равняется GL-1, ТМ-2 – GL-2 и так далее.

Таким образом, если перед нами маркировка ТМ-5-18, то последняя цифра будет указывать на кинематическую вязкость жидкости.

Согласно ГОСТ 23652-79 существуют следующие марки трансмиссионных смазочных жидкостей исходя из показателей вязкости:

  • ТЭп-15 – изготавливаются на основе экстракта остаточных и дистилляторных масел. Обладают противоизносными и депрессорными присадками.
  • ТСп-10 – содержат противозадирные, депрессорные и антипенные присадки. Используются такие масла для тяжело нагруженных передач.
  • Тап-15В – изготавливается путем смешения экстрактов остаточных масел фенольной очистки с дистиллятными маслами. Содержат противозадирные и депрессорные присадки.
  • ТСп-15К – содержит противозадирные, противоизносные, депрессорные и антипенные присадки. Применимы для большегрузных машин, например, для КАМАЗов.
  • ТСп-14 гип – включает в свой состав противозадирные, антиокислительные, депрессорные и антипенные присадки. Используется для гипоидных передач автомобилей грузового типа.
  • ТАД-17и – универсальные жидкости, которые изготавливаются на минеральной основе. Содержат многофункциональные серофосфоросодержащие, депрессорные и антипенные присадки.

Помимо вязкости, при выборе смазочного материала необходимо обратить внимание на классификации эксплуатационных характеристик (API – США или ZF – европейский стандарт), а также на плотность масла трансмиссионного. Например, для масла ТЭп-15 показатель плотности при 20 градусах составит не более 0,950 г/см3.

Все эти свойства могут измениться после продолжительного срока хранения смазочной жидкости для КПП. Поэтому необходимо помнить о таких моментах, как: срок годности трансмиссионного масла.

Условия хранения трансмиссионного масла

Смазочные составы для КПП имеют свой гарантийный срок, который составляет 5 лет, и в некоторых случаях 3 года. По истечении этого периода присадки, содержащиеся в жидкости теряют свои свойства и соответственно такое просроченное масло не будет отвечать необходимым требованиям.

Стоит отметить, что период 3-5 лет обозначает срок хранения автомобильного масла в неоткрытой таре. Если же вы уже вскрыли бутылку, то срок хранения жидкости будет зависеть от многих условий. Чтобы состав дольше оставался действенным необходимо придерживаться следующих рекомендаций:

  • не допускать перепадов температурных режимов, жидкость нужно хранить при постоянной температуре, не превышающей 20 градусов;
  • масло должно храниться в хорошо проветриваемом помещении, вдали от прямых солнечных лучей;
  • не рекомендуется переливать смазочный материал в другую тару, лучше хранить в заводской канистре, с плотно закрытой крышкой;
  • не замораживать «трансмиссионку» ни при каких обстоятельствах.

При соблюдении этих условий масло будет храниться весь заявленный срок.

Некоторые автолюбители «оживляют» просроченное масло специальными присадками. Делать это не рекомендуется, так как в жидкости могут остаться «живые» присадки и при таком смешении их количество изменится, что, в свою очередь, уже не будет отвечать нормам. Кроме этого, новые компоненты могут вступить в химическую реакцию со старыми присадками, в результате чего их свойства будут непредсказуемыми.

Многие ошибочно считают что если «трансмиссионка» изменила свой цвет, то это является основным признаком непригодности жидкости. Это не всегда так. Дело в том, что в процессе производства главным параметром являются смазывающие характеристики состава, поэтому некоторое отклонение в цвете или запахе допустимо. Однако, если изменился не только цвет, но и появился темный кристаллический осадок, а само масло помутнело, то такой продукт заливать нельзя.

Также стоит сказать, что хранение трансмиссионного или моторного масла в бочке или системе автомобиля – это две разные вещи. Во втором случае, смазка постоянно находится в контакте с окружающей средой, в результате чего возникают окислительные процессы и появляются различные отложения. Поэтому даже если вы залили новое масло в авто без пробега, то это не означает что менять его можно лет через 5. Плановая замена масла для КПП зависит от эксплуатационных условий, но специалисты рекомендуют менять жидкость каждые 70 000 км при нормальной работе системы и через 25 000 км при езде в особых условиях (жара, холод, полная загрузка и так далее).

В заключении

В некоторых марках машин не предусмотрена плановая замена «трансмиссионнки», но, тем не менее, рекомендуется проверять уровень жидкости еженедельно.

Устройство и принцип работы смазочной системы двигателя

Принципиальная задача системы смазки двигателя в разрезе десятилетий развития ДВС осталась неизменной – подача к трущимся элементам смазывающего и теплоотводящего материала. Но повсеместные ужесточения экологических норм заставляют конструкторов находить скрытые ресурсы для повешения КПД мотора и уменьшения вредных выбросов в атмосферу. Рассмотрим устройство системы смазки двигателя, их виды, принцип работы масляного насоса и редукционного клапана.

Схема циркуляции масла в двигателе

Система смазки ДВСМоторное масло из поддона всасывается шестеренчатым насосом и подается к фильтру. Проходя через фильтрующий элемент, масло по каналам в блоке цилиндров и ГБЦ подается к шейкам коленчатого вала, кулачкам и постелям распределительного вала. Давление в системе смазки зависит от скорости вращения коленчатого вала. Минимальное давление развивается насосом на холостом ходу, а максимальное ограничивается редукционным клапаном.

Для контроля водителем исправности системы в блоке цилиндров, а иногда и в ГБЦ, вмонтирован датчик давления масла. На современных авто стрелочным указателем давления на приборной панели оборудуются лишь немногие спортивные автомобили. На большинстве авто их заменили индикатором низкого давления, который загорается лишь при падении напора в масляных магистралях.

Усложнение конструкции

Система смазки ДВСНа примере дизельного двигателя объемом 2,5 л от VW можно увидеть, насколько сложнее стала схема работы смазочной системы современного двигателя. Давайте рассмотрим предназначение каждого из элементов.

  • Двухступенчатый масляный насос шестеренчатого типа с внутренним зацеплением. Устанавливается в поддоне картера.
  • Клапан регулировки давления масла. С помощью электромагнитного клапана ECU (Engine Control Module) направляет масло в разные каналы, переключая тем самым режимы работы масляного насоса. При регулировании производительности учитывается нагрузка на двигатель, температура охлаждающей жидкости, обороты коленчатого вала и сигналы с АКПП. При подаче управляющего сигнала клапан открывается, пропуская масло в каналы первой ступени (давление в системе порядка 1,8 атмосфер). При отсутствии управляющей «массы» возвратная пружина возвращает клапан в исходное положение, изменяет направление протекания масла, поднимая давление в системе до 3,3-4 Атм.

Изменение производительности позволяет снизить механические потери, затрачиваемые на смазывание и охлаждение трущихся пар двигателя. Такое решение повышает общий КПД двигатели, уменьшая количество вредных выбросов.

  • Обратные клапаны в возвратных трубопроводах. Пропускают смазку только в одном направлении и предотвращают полный слив масла из каналов после остановки двигателя. Заполненные каналы позволяют избежать масляного голодания в первые секунды после запуска мотора.
  • Предохранительный клапан. Открывается при холодном запуске, когда в системе развивается чрезмерное давление.
  • Клапан малого контура циркуляции. Срабатывает при засорении фильтрующего элемента, открывая путь маслу в обход фильтра.
  • Масляный охладитель. Через корпус теплообменника циркулирует масло и охлаждающая жидкость.
  • Охладитель способствует поддержанию теплового баланса двигателя и препятствует перегреву масла.
  • Клапан масляной форсунки. Открывается при достижении в системе расчетного давления, открывая магистраль к форсункам.
  • Масляная форсунка. Разбрызгивает масло на днище поршня, отводя от него тепло.
  • Редукционный клапан. Срабатывает при достижении в системе чрезмерного давления, защищает ГБЦ от лишнего масла.

Масляный насос

Среди различных типов конструкции наибольшее распространение получили шестеренчатые и роторные масляные насосы. Устройство масляного насоса шестеренчатого типа с наружным зацеплением:

Система смазки ДВС

  1. Ведомая шестерня.
  2. Канал забора масла с поддона.
  3. Ведущая шестерня. Именно она посредством червячной, цепной или шестеренчатой передачи соединена с коленчатым валом двигателя.
  4. Приводной вал (в данном типе масляного насоса соединяет коленвал и ведущую шестерню).
  5. Канал нагнетания.
  6. Ось вращения ведущей шестерни.

При вращении шестерен масло всасывается из заборного канала и подается по каналам нагнетания к трущимся парам двигателя. Давление масла в системе смазки и производительность насоса напрямую связаны со скоростью вращения коленчатого вала. При превышении давления, достаточного для смазывания и отвода тепла трущихся элементов, лишняя смазка стравливается редукционном клапаном.

Система смазки ДВС

В отличие от шестеренчатого насоса с наружным зацеплением, в помпах с внутренним зацеплением ведущая шестерня вращается внутри ведомой. Принцип работы смазочной системы с точки зрения нагнетания давления остается неизменным и схож с работой роторной помпы. Внутри корпуса устанавливается внешний и внутренний роторы. Вращение последнего приводит к всасыванию смазки и подаче ее под давлением в нагнетательный канал.

Редукционный клапан

Поскольку производительность нерегулируемых насосов напрямую зависит от количества оборотов двигателя, максимальное безопасное давление масла в системе смазки поддерживается редукционным клапаном. Он представляет собой запорный клапан, подпертый возвратной пружиной. Когда расчетное давление масла со стороны клапана преодолевает усилие пружины, клапан открывается, перепуская излишки масла обратно в поддон картера.

Система смазки ДВС

Двухступенчатые масляные насосы

Конструкцию двухступенчатого масляного насоса рассмотрим на примере агрегата роторного типа от автоконцерна VAG.

Система смазки ДВС

  1. Первая ступень работы определяется конструкторами, исходя из необходимого двигателю объема масла на всех режимах работы. Из полости нагнетания масло направляется в каналы двигателя и к подвижному ротору в месте его упора в регулировочную пластину. В таком режиме объем полости всасывания и, как следствие, количество прокачиваемого масла небольшое.
  2. Вторая ступень. При повышении оборотов двигателя возникает потребность в большем количестве смазки. Давление на подвижный ротор ослабевает. Теперь регулировочная пружина доворачивает статор на несколько градусов, изменяя положение ведомого ротора. Таким образом увеличивается объем полости всасывания и количество прокачиваемой смазки.

В двигателях FSI Audi объемом 2,8 и 3,2 литра переход с первой на вторую ступень происходит на оборотах коленвала свыше 4600. Благодаря двухступенчатым помпам конструкторам удалось на 1/3 снизить расход топлива.

Клапан N428

Клапан управления масляного насоса N428 предназначен для регулировки давления на управляющий поршень. В зависимости от давления на поршень, изменяется положение статора и объем камеры всасывания. Часть масла из полости нагнетания всегда подается в управляющую магистраль к клапану N428. По команде блока управления двигателя на клапан подается питание, масло подается к управляющему поршню. По своему устройству N428 представляет собой электроуправляемый гидравлический 3/2 ходовой клапан.

Система смазки ДВС

Система смазки ДВС

Отличие мокрого картера от сухого

Выше нами рассмотрен исключительно мокрый картер, когда основной объем системы смазки двигателя находится в поддоне и забирается оттуда масляным насосом.

Система смазки ДВС

На схеме представлены детали и приборы системы смазки мотора с сухим картером. Основное отличие в том, что поддон двигателя не используется для хранения масла. Весь стекший туда смазывающий материал откачивается специальным насосом и подается в отдельный бак. Оттуда давление в масляной системе создается уже при помощи нагнетающей помпы. Такая система смазки двигателя применяется на автомобилях повышенной проходимости и гоночных болидах. Основные преимущества:

  • уменьшается высота поддона, что позволяет установить мотор ниже. Снижение центра масс улучшает курсовую устойчивость и управляемость автомобиля;
  • сухой картер исключает масляное голодание при движении авто в больших продольных и поперечных углах, что актуально для внедорожников на пересеченной местности;
  • исключено масляное голодание вследствие отлива смазки (перетекания из одной части в другую) при длительном движении автомобиля в дуге, что актуально для кольцевых автогонок и соревнований по дрифту;
  • моторное масло лучше охлаждается.

Но не лишена система и недостатков, так как усложнение системы снижает надежность и увеличивает массу автомобиля.

Видео: Система смазки двигателя внутреннего сгорания (ДВС) в 3D. Как работает?

Неполадки в системе смазки

  • механический износ деталей масляного насоса. Происходит вследствие несвоевременной замены масла, фильтрующего элемента. При износе в зоне всасывания не создается достаточное разряжение, из-за чего падает производительность помпы;
  • коксование и засорение посторонними предметами маслоприемника. Случается при несвоевременной замене масла, разрушении пластиковых элементов натяжительных и успокоительных башмаков;
  • подвисание редукционного клапана;
  • электрическая неисправность или проблемы с проводкой клапана управления двухступенчатым насосом;
  • выход из строя датчика давления масла, из-за чего на приборной панели загорается сигнальная лампа низкого давления;
  • заклинивание обратного клапана в возвратных магистралях;
  • поломка указателя давления масла;
  • заклинивание масляного термостата, применяющегося для более быстрого прогрева смазки.

Современная смазочная система состоит из множества механических и электронных компонентов, ввиду чего надежность ее значительно снизилась. Поэтому крайне важно следить за соблюдением сервисных интервалов, качеством фильтров и моторного масла.

Источник Источник Источник Источник Источник http://prem-motors.ru/sistema-smazki-dvs/
http://avto-moto-shtuchki.ru/avtotekhnika/58-avtomobilnye-masla-ih-klassifikacija.html
Источник http://topmekhanik.ru/sistema-smazki-dvigatelya/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Стоимость замены сцепления и ремонт коробки передач: что нужно знать

Стоимость замены сцепления и ремонт коробки передач: что нужно знать

Ремонт автомобиля, особенно таких важных узлов, как сцепление и коробка передач, всегда вызывает вопросы у владельцев машин. Чтобы избежать неприятных сюрпризов и быть готовым к возможным затратам, важно понимать, что влияет на стоимость и как выбрать подходящий автосервис. Замена сцепления: что входит в стоимость Это процедура, которая включает не только замену самого узла, но и […]

Карданный вал ГАЗ Соболь и ГАЗель Бизнес: неотъемлемая часть трансмиссионной системы

Карданный вал ГАЗ Соболь и ГАЗель Бизнес: неотъемлемая часть трансмиссионной системы

Карданный вал является одним из ключевых элементов в трансмиссии любого автомобиля, выполняя функцию передачи крутящего момента от двигателя к ведущим колесам. Эта деталь особенно важна для коммерческих автомобилей, таких как ГАЗ Соболь и ГАЗель Бизнес двигатель, которые испытывают значительные нагрузки из-за интенсивной эксплуатации и перевозки тяжелых грузов. Особенности конструкции Карданный вал для ГАЗ Соболь и […]