Как посчитать передаточное число цепной передачи
Как рассчитать скорость по передаточным числам
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Общее определение
Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.
Передачи с крутящим моментом
В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:
Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.
Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.
Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.
Переходной конструкцией является ременная зубчатая передача.
На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.
Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.
Характеристика зубчатой передачи
В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.
Модуль – размер между одинаковыми точками двух соседних зубьев.
Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.
Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.
Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.
Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.
Зачем нужна паразитка
При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:
- количества оборотов;
- мощности;
- направление вращения.
Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.
Виды зубчатых соединений
Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:
Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.
Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.
Недостаток косозубых зацеплений в дополнительной нагрузке на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.
Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.
В конической зубчатой передаче оси расположены под углом. Рабочий элемент нарезается по конической плоскости. Передаточное число таких пар может равняться 1, когда надо только изменить плоскость действия силы. Для увеличения мощности нарезается полукруглый зуб. Передающееся количество оборотов считается только по зубу, диаметр в основном используется при расчетах габаритов узла.
Винтовая передача имеет зуб, нарезанный под углом 45⁰. Это позволяет располагать оси рабочих элементов перпендикулярно в разных плоскостях.
У червячной передачи нет шестерни, ее заменяет червяк. Оси деталей не пересекаются. Они расположены перпендикулярно в пространстве, но разных плоскостях. Передаточное число пары определяется количеством заходов резьбы на червяке.
Кроме перечисленных производят и другие виды передач, но они встречаются крайне редко и к стандартным не относятся.
Многоступенчатые редукторы
Как подобрать нужное передаточное число. Двигатель обычно выдает несколько тысяч оборотов в минуту. На выходе – колесах автомобиля и шпинделе станка, такая скорость вращения приведет к аварии. Мощности исполняющего механизма не хватит, чтобы рабочий инструмент мог резать металл, а колеса сдвинули автомобиль. Одна пара зубчатого зацепления не сможет обеспечить требуемое понижение или ведомая деталь должна иметь огромные размеры.
Создается многоступенчатый узел с несколькими парами зацеплений. Передаточное число редуктора считается как произведение чисел каждой пары.
Uр – передаточное число редуктора;
Перед тем как подобрать передаточное число редуктора, надо определиться с количеством пар, направлением вращения выходного вала, и делать расчет в обратном порядке, исходя из максимально допустимых габаритов колес.
В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.
Редуктор и коробка скоростей
Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.
Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.
Трансмиссия автомобиля
В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение — передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.
Читать также: Прибор для определения влажности древесины
В состав трансмиссии входит несколько редукторов. Это, прежде всего:
- коробка передач – скоростей;
- дифференциал.
Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.
Посредством переключения – перемещения вала, шестерни на валу соединяются поочередно с разными колесами. При включении задней скорости, через паразитку меняется направление вращения, автомобиль в результате движется назад.
Дифференциал представляет собой конический редуктор с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Расчет скорости по передаточным числам кпп
* Максимальная скорость вычисляется из передаточных чисел трансмиссии, оборотов двигателя и размеров шин. Но двигатель может оказатся недостаточно мощным и реальная максимальная скорость будет меньше, чем подсчитанная. ** Вычисление тяги и максимального угла подъема происходит без учета сил трения и соприкосновения колес с землей и могут быть меньше, чем подсчитанные.
Вы можете скачать и установить данный калькулятор у себя на сайте при условии размещения ссылки на источник, то есть на магазин 4×4. Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль. Нажмите кнопку «Рассчитать КПП».
При определении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максимального сопротивления дороги. Промежуточные передачи коробки передач используются при разгоне автомобиля, преодолении повышенного сопротивления движению, работе автомобиля в условиях, не позволяющих двигаться с высокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.
При расчете передаточных чисел сначала находят передаточное число I передачи по заданному техническими условиями максимальному коэффициенту сопротивления дороги ψ
max или максимальному динамическому фактору автомобиля по тяге
D
max на I передаче.
Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебрегая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:
а – сила тяжести автомобиля с полной нагрузкой, Н;
M
max – максимальный крутящий момент двигателя, Н•м.
Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I передаче, необходимо выполнение следующего неравенства:
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
сц – динамический фактор автомобиля по сцеплению;
m
p2=1,20. 1,35 – коэффициент изменения реакций на задних ведущих колесах;
G
а2 – сила тяжести автомобиля с полной нагрузкой, приходящаяся на задние колеса, Н;
φ
х=0,6. 0,8 – коэффициент сцепления колес с дорогой. Для переднеприводных автомобилей под
Gа2
принимают сила тяжести автомобиля с полной нагрузкой, приходящуюся на передние колеса, Н, а
m
p2=1.
Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:
После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных передаточных чисел I передачи коробки передач для дальнейших расчетов выбирают меньшее.
По этому значению передаточного числа I передачи и известному значению передаточного числа высшей передачи определяют передаточные числа промежуточных передач.
Если высшая передача прямая (u
п=1), то для расчета передаточных чисел промежуточных передач используют следующее выражение
‘ – число передач, не считая повышающую передачу и передачу заднего хода;
k
– номер передачи.
Если высшая передача повышающая (u
Рис. 4. Динамические характеристики автомобиля с трехступенчатой (а) и четырехступенчатой (б) коробками передач:
I-IV – передачи; v’
max,
v’’
max – максимальные значения скорости движения при коэффициентах сопротивления дороги соответственно
ψ
1 и
ψ
2
Передаточное число передачи заднего хода
Окончательное значение передаточного числа передачи заднего хода определяют при компоновке коробки передач.
Рассчитанные передаточные числа коробки передач являются ориентировочными и при проектировании новой коробки передач могут незначительно изменяться. Окончательно передаточные числа коробки передач уточняют при выборе параметров зубчатого зацепления в процессе проектирования коробки передач.
4.
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Расчет и построение тяговой характеристики автомобиля.
Теоретическую тяговую характеристику автомобиля Рт=f(Vа) можно получить расчетным путем по следующей методике:
· внешнюю скоростную характеристику двигателя (см. пункт 2 раздела 2.2);
· ряд передаточных чисел трансмиссии iтр и к.п.д. трансмиссии ηтр(раздел 3);
· статический радиус колеса (пункт 1 раздела 2.2).
Рассчитать силу тяги Ртна различных передачах и режимах движения автомобиля, результаты свести в таблицу.
Таблица 2. Данные для построения тяговой и динамической
Пере-дача | iтр | ηтр | nе , мин -1 | Vа , м/с | Ме,Нм | Рт,Н | Рв,Н | D |
15,05 | 0,91 | 1.88 | 123.06 | 6240.85 | — | 0.44 | ||
3.67 | 135.38 | 6869.3 | — | 0.47 | ||||
5.63 | 137.42 | 6972.7 | 20.08 | 0.48 | ||||
7.51 | 130.75 | 6634.26 | 35.72 | 0.46 | ||||
При N мах | 10.52 | 109.87 | 5574.8 | 70.1 | 0.38 | |||
nmax | 11.64 | 96.27 | 4884.74 | 85.83 | 0.33 | |||
8,61 | 0,91 | 3.28 | 123.06 | 3571.2 | — | 0.24 | ||
6.56 | 135.38 | 3928.73 | 27.26 | 0.27 | ||||
9.84 | 137.42 | 3987.93 | 61.33 | 0.27 | ||||
13.12 | 130.75 | 3794.37 | 109.04 | 0.25 | ||||
При N мах | 18.36 | 109.87 | 3188.43 | 213.54 | 0.2 | |||
nmax | 20.33 | 96.27 | 2793.76 | 261.83 | 0.17 |
5,58 | 0,91 | 5.06 | 123.06 | 2313.53 | 16.21 | 0.16 |
10.12 | 135.38 | 2545.14 | 64.87 | 0.17 | ||
15.18 | 137.42 | 2583.5 | 145.97 | 0.17 | ||
20.24 | 130.75 | 2458.1 | 259.51 | 0.15 | ||
При N мах | 28.33 | 109.87 | 2065.56 | 508.44 | 0.10 | |
nmax | 31.37 | 96.27 | 1809.88 | 623.41 | 0.08 | |
4,1 | 0,91 | 6.89 | 123.06 | 1700.69 | 30.07 | 0.11 |
13.78 | 135.38 | 1870.95 | 120.29 | 0.12 | ||
20.67 | 137.42 | 1899.14 | 270.66 | 0.11 | ||
27.56 | 130.75 | 1806.97 | 481.17 | 0.09 | ||
При N мах | 38.58 | 109.87 | 1518.4 | 942.91 | 0.04 | |
nmax | 42.71 | 96.27 | 1330.5 | 1155.59 | 0.01 |
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Ме берется из скоростной характеристики. Рт подсчитывается по формуле:
I передача
II передача
III передача
VI передача
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Где uкп – передаточное число коробки передач, uгп – передаточное число главной передачи.
iтр иuтр – равноценные обозначения.
Vа — скорость автомобиля, определяется по формуле:
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Цепная передача. Проектировочный расчет в Excel.
Если на вашем компьютере нет программы MS Excel, то ее в данном случае можно полноценно заменить программой OOo Calc из пакета Open Office, который можно бесплатно скачать и установить.
Расчет будем делать для передачи с двумя звездочками, без специальных натяжных устройств. Схему роликовой цепной передачи вы видите на рисунке, расположенном чуть ниже. Начинаем работу — включаем Excel и открываем новый файл. Далее будет детально описан процесс создания программы расчета.
В ячейки со светло-бирюзовой заливкой будем писать исходные данные и данные, выбранные пользователем по таблицам или уточненные (принятые) расчетные данные. В ячейках со светло-желтой заливкой считываем результаты расчетов. В ячейках с бледно-зеленой заливкой помещены мало подверженные изменениям исходные данные. Синий шрифт – это исходные данные, красный шрифт – это результаты расчетов, черный шрифт – промежуточные и не главные результаты.
Еще раз напоминаю, что в примечаниях ко всем ячейкам столбца D размещаем пояснения, как и откуда берутся или по каким формулам считаются все значения в таблице файла.
Исходные данные (блок 1):
1. Коэффициент полезного действия передачи КПД (это КПД цепной передачи и КПД двух пар подшипников качения) пишем
в ячейку D2: 0,921
2. Предварительное значение передаточного числа передачи u’ записываем
в ячейку D3: 3,150
Цепная передача должна проектироваться с передаточными числами желательно не более 7, в особых случаях – не более 10.
Частоту вращения вала малой приводной звездочки
n1
в об/мин вводим
в ячейку D4: 120,0
Частота вращения быстроходного вала передачи не должна превышать значений, указанных в примечании к ячейке D4!
Номинальную мощность привода (мощность на валу меньшей звездочки)
P1
в КВт заносим
в ячейку D5: 5,000
Расчет цепной передачи (блок 1):
5. Определяем число зубьев ведущей малой звездочки z1
в ячейке D6: =ОКРВВЕРХ(31-2*D3;1) =25
z1 =31-2* u’ с округлением в большую сторону до целого числа (желательно до нечетного, еще лучше до простого числа)
6. Вычисляем вращательный момент на валу малой звездочки T1 в Н*м
в ячейке D7: =30*D5/(ПИ()*D4)*1000 =397,9
T1 =30* P1 /(π* n1 )
7. Определяем число зубьев ведомой большой звездочки z2
в ячейке D8: =ОКРУГЛ(D3*D6;0) =79
z2 = z 1 * u’ с округлением до целого числа
Число зубьев большой звездочки не должно превышать 120!
8. Уточняем окончательное передаточное число передачи u
в ячейке D9: =D8/D6 =3,160
u = z2 / z1
9. Рассчитываем отклонение передаточного числа окончательного от предварительного delta в %
в ячейке D10: =(D9-D3)/D3*100 =0,32
delta =( u — u ’ )/ u’
Отклонение передаточного числа желательно не должно превышать 3% по модулю!
10. Частоту вращения вала большой звездочки n2 в об/мин считаем
в ячейке D11: =D4/D9 =38,0
n2 = n1 / u
Мощность на валу большой звездочки
P2
в КВт определяем
в ячейке D12: =D5*D2 =4,606
P2 = P1 * КПД
12. Вычисляем вращательный момент на валу большой звездочки T2 в Н*м
в ячейке D13: =30*D12/(ПИ()*D11)*1000 =1158,4
T2 =30* P2 /(3,14* n2 )
Исходные данные (блок 2):
Все значения коэффициентов в этом блоке назначаем в соответствии с рекомендациями, приведенными в примечаниях к соответствующим ячейкам.
13. Назначаем динамический коэффициент kд и записываем
в ячейку D14: 1,00
14. Выбираем коэффициент межосевого расстояния передачи kа и записываем
в ячейку D15: 1,00
15. Назначаем коэффициент наклона оси передачи к горизонту kн и записываем
в ячейку D16: 1,00
16. Назначаем коэффициент регулировки натяжения цепи kр и записываем
в ячейку D17: 1,25
17. Выбираем коэффициент способа смазки цепи kсм и записываем
в ячейку D18: 1,40
18. Выбираем коэффициент периодичности работы передачи kп и записываем
в ячейку D19: 1,25
Расчет цепной передачи (блок 2):
19. Вычисляем коэффициент условий эксплуатации передачи kэ
в ячейке D20: =D14*D15*D16*D17*D18*D19 =2,19
kэ = k д * k а * k н * k р * k см * kп
Далее пользователь работает с программой по циклу в диалоговом режиме.
20. Задаемся числом рядов цепи m и заносим
21. Принимаем предварительно допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейке D22: 27,0
Это примерно среднее значение при n 1 =120 об/мин по таблице в примечании к ячейке D22.
Читать также: Калькулятор ш образного трансформатора
22. Вычисляем допускаемое давление в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =29,2
при m =1: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))
при m =2: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))*0,85
23. Определяем расчетный минимальный шаг цепи t
’
в мм
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =29,704
t ‘ =2,8*( T 1 * k э /( z 1 * [ p ] * m ))^(1/3)
24. Выбираем из стандартного ряда, приведенного в примечании к ячейке D25, ближайшее большее от расчетного значение шага цепи t
в мм и записываем
в ячейку D25: 31,750
21/2. Возвращаемся к п.21 и записываем уточненное для выбранного шага цепи t =31.750 мм допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейку D22: 26,0
22/2. Считываем новое значение допускаемого давления в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =28,1
23/2. Считываем новое значение расчетного минимального шага цепи t’
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =30,080
Выбранный нами в п.24 шаг цепи t
остался больше расчетного значения
t’
. Это хорошо, иначе нам пришлось бы выбирать из стандартного ряда новое большее значение шага цепи
t
и повторять возврат к
п.21 .
25. По выбранному шагу определяем из таблицы примечания к ячейке D26 площадь проекции шарнира цепи A
в мм2 и записываем
в ячейку D26: 262
26. Рассчитываем линейную скорость цепи v
в ячейке D27: =D6*D25*D4/60000 =1,6
v = z1 * t * n1 /60000
Линейная скорость цепи желательно не должна превышать 7 м/с для открытых передач!
27. Окружную силу Ft
в ячейке D28: =D5*1000/D27 =3149,6
Ft = P 1 *1000/ v
28. Определяем расчетное давление в шарнирах цепи p
в ячейке D29: =D28*D20/D26 =26,3
p = Ft * kэ / A
29. На этом шаге программа сравнивает расчетное давление в шарнирах цепи p
с допускаемым давлением
[p]
и выдает резюме
в объединенной ячейке B30C30D30E30: =ЕСЛИ(E29
. «) = Все хорошо: p
Если
p> [p] ,то необходимо вернуться к п.20 и выполнить расчет вновь, увеличив рядность или шаг цепи
Если
p[p] ,то, как в нашем примере, все хорошо, можно переходить к завершающему блоку расчета цепной передачи
Расчет цепной передачи (блок 3):
30. Вычисляем минимальное рекомендуемое межцентровое расстояние передачи a min в мм
в ячейке D31: =30*D25 =953
a min =30* t
31. Вычисляем максимальное рекомендуемое межцентровое расстояние передачи a max в мм
в ячейке D32: =50*D25 =1588
a max =50* t
Межосевое расстояние цепной передачи не должно превышать 80*
t!
32. Назначаем из определенного выше диапазона и конструктивных параметров предварительное межцентровое расстояние передачи a’ в мм и пишем
в ячейку D33: 1000
Межосевое расстояние желательно выбирать
из диапазона:aminaamax
33. Вычисляем расчетное число звеньев цепи Lt’
в ячейке D34: =2*D33/D25+0,5*(D6+D8)+(((D8-D6)/(2*ПИ()))^2)/(D33/ D25) =117,3
Lt’ =2* a’ / t +0,5*( z1 + z2 )+((( z2 — z1 )/(2*π))^2)/( a’ / t )
34. Выбираем число звеньев цепи Lt , округлив полученное выше значение Lt’ до ближайшего целого четного значения и записываем
в ячейку D35: 118
35. Вычисляем окончательное уточненное межцентровое расстояние цепной передачи a в мм с учетом необходимого провисания цепи
в ячейке D36: =0,25*D25*(D35- (D6+D8)/2+((D35- (D6+D8)/2)^2-8*((D8-D6)/2/ПИ())^2)^0,5)*0,996 =1007
a =0,25* t *( Lt -0,5*( z1 + z2 )+(( Lt -0,5*( z1 + z2 ))^2-8*(( z2 — z1 )/(2* π))^2)^0,5)*0,996
36. Определяем делительный диаметр ведущей малой звездочки d1
в ячейке D37: =D25/SIN (ПИ()/D6) =253,3
d 1 = t /sin(π/ z 1 )
37. Вычисляем делительный диаметр ведомой большой звездочки d2
в ячейке D38: =D25/SIN (ПИ()/D8) =798,6
d 2 = t /sin(π/ z 2 )
Проектировочный расчет в Excel цепной передачи с двумя звездочками без специальных натяжных устройств выполнен. Определены основные параметры и габаритные размеры передачи на основе частично заданных силовых и кинематических характеристик. Полученные данные можно использовать для более детального геометрического расчета звездочек и проверочных силовых расчетов.
Всегда жду ваших отзывов, вопросов, комментариев на статью, уважаемые читатели.
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-tsepnoy-peredachi (xls 55,5KB).
Классификация передач. Приводные роликовые цепи различают (рис. 77): однорядные нормальные (ПР), однорядные длиннозвенные облегченные (ПРД), однорядные усиленные (ПРУ), двух (2ПР)-, трех (ЗПР)-и четырехрядные (4ПР) и с изогнутыми пластинками (ПРИ).
Рис.77. Виды приводных цепей: а – втулочная однорядная, б – роликовая однорядная, в – роликовая двухрядная, г – роликовая с изогнутыми пластинами, д – зубчатая, е – фасонозвенная крючковая, ж – фасонозвенная штыревая.
Назначение. Цепные передачи относится к механическим передачам зацепления с гибкой связью и применяют для передачи вращательного вращения между валами расположенным на значительных расстояниях и при необходимости обеспечить постоянное передаточное отношение. Цепная передача состоит из расположенных соосно на некотором расстоянии друг от друга звездочек, и охватывающей их цепи. Вращение ведущей звездочки преобразуется во вращение ведомой благодаря сцеплению цепи с зубьями звездочек. В связи с вытягиванием цепей по меpe их износа натяжное устройство цепных передач должно регулировать натяжение цепи. Это регулирование, по аналогии с ременными передачами, осуществляют либо перемещением вала одной из звездочек, либо с помощью регулирующих звездочек или роликов.
Преимущества. Благодаря зацеплению отсутствует скольжение тягового органа. Возможность передачи движения между валами на большие расстояния (до 8М). Меньшие габариты, чем у ременных передач, особенно по ширине. Меньшие нагрузки на опоры валов передачи. Возможность передачи вращения одной цепью нескольким валам. Больший КПД.
Недостатки. Повышенный шум и вибрации вследствие удара звеньев цепи по звездочкам, которые повышаются с увеличением ее скорости. Увеличение шага цепи в процессе эксплуатации в связи с ее износом. Необходимость устройств для натяжения цепей. Отсутствие жидкостного трения в шарнирах увеличивает их износ поэтому необходима смазка периодическая или постоянная. Скорость цепи неравномерна, особенно при малых числах зубьев звездочек, что создает дополнительные динамические нагрузки и колебания передаточного числа.
Сферы применения. Цепные передачи применяют в транспортных, сельскохозяйственных, строительно-дорожных, горных и нефтяных машинах, а также в металлорежущих станках.
По мощности передачи применяются при 100КВт, (в некоторых передачах до 3000КВТ), по окружной скорости — 15М/с, по передаточным числам 7, КПД цепных передач 0,94…0,97.
Геометрический расчет. Центры шарниров цепи при зацеплении с зубьями звездочки располагаются на делительной окружности звездочек, который определяется
Где Р — Шаг цепи; — Число зубьев звездочки.
Для приводных цепей зубья звездочек определяют все размеры зубьев, а также диаметр вершин И впадин зубьев этих звездочек (рис. 78).
Минимальное межосевое расстояние Атіп Цепной передачи принимают в зависимости от передаточного числа И Передачи и условия, что угол обхвата цепью меньшей звездочки составляет не менее 120°, т. е. при И Расчет цепной передачи — 3.3 out of 5 based on 11 votes
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Читать также: Переходник скарт тюльпан scart av rca черный
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
P2 |
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Калькулятор кпп и главной пары: расчет максимальной скорости движения автомобиля по передаточным числам — Honda Civic VI Type-R EK9
Сообщений 1 страница 12 из 12
Поделиться114 января, 2011г. 23:27:56
- Автор: Миха150
- Участник
- Откуда: Солнечногорск
- Зарегистрирован: 27 февраля, 2010г.
- Сообщений: 98
- Уважение: [+4/-0]
- Позитив: [+7/-0]
- Приглашений: 0
- Пол: Мужской
- Возраст: 45 [1974-09-15]
- Провел на форуме: 5 дней 20 часов
- Последний визит: 29 мая, 2014г. 23:14:01
Ссылка: https://4×4.lviv.ua/?calculator=tuning Модераторы поправьте пожалуйста если не правильно вставил ссылку,просто не понял как это сделать .Спасибо.
Поделиться215 января, 2011г. 09:20:50
- Автор: aleks35
- Активный участник
- Откуда: вологодская область
- Зарегистрирован: 15 декабря, 2010г.
- Сообщений: 431
- Уважение: [+21/-0]
- Позитив: [+27/-0]
- Приглашений: 0
- Пол: Мужской
- Возраст: 41 [1979-03-05]
- Провел на форуме: 8 дней 15 часов
- Последний визит: 25 ноября, 2012г. 02:24:01
Миха150 Спасибо , ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).
Поделиться315 января, 2011г. 09:55:04
- Автор: KostW
- Администратор
- Откуда: г.Малмыж Кировской области
- Зарегистрирован: 18 октября, 2010г.
- Сообщений: 2692
- Уважение: [+130/-8]
- Позитив: [+402/-10]
- Приглашений: 0
- Пол: Мужской
- Возраст: 56 [1964-01-06]
- ICQ: 43474262
- награды: help
- Провел на форуме: 2 месяца 20 дней
- Последний визит: Сегодня 20:48:47
ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).
Тоже скачал и посмотрел. Не силен я в програмировании, но думаю можно изменить параметры и сделать для одного моста. Или связаться с авторами, дабы сами они сменили, чтобы не-было нарушений
Поделиться415 января, 2011г. 20:29:56
- Автор: Миха150
- Участник
- Откуда: Солнечногорск
- Зарегистрирован: 27 февраля, 2010г.
- Сообщений: 98
- Уважение: [+4/-0]
- Позитив: [+7/-0]
- Приглашений: 0
- Пол: Мужской
- Возраст: 45 [1974-09-15]
- Провел на форуме: 5 дней 20 часов
- Последний визит: 29 мая, 2014г. 23:14:01
Спасибо , ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).
Все подходит я на нем считал полный привод.Очень удобно особенно полноприводный с разными диаметрами колес,в левую колонку забиваеш данные по размерам резины и методом подбора передаточные ГП.Пример:в правую колонку резина в мм 20575R16 и значение ГП УАЗ 5.125 в левую 16580R12 подбираем ГП переднего моста из стандартных ВАЗ у меня получилось 4.1 при этом в графе скорость до и после тюнинга получил одинаковые значения.Так же удобно подбирать скорость . в бщем там все понятно не удобно одно т.к в большинстве случаев приходится ставить 2кпп передаточные числа приходится суммировать на калькуляторе или при помощи карандаша и бумаги,но это кому как нравится.
Отредактировано Миха150 (15 января, 2011г. 20:39:32)
Расчет передаточного числа редуктора онлайн калькулятор
Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.
Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)
Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска. Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов. Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль. Нажмите кнопку «Рассчитать КПП».
Данный тюнинг-калькулятор поможет Вам просчитать изменения в поведении и характеристиках вашего внедорожника при замене колес, двигателя, коробки передач и т.д.
— Введите характеристики оборудования до и после тюнинга Вам достаточно ввести характеристики оборудования до и после тюнинга.
* Максимальная скорость вычисляется из передаточных чисел трансмиссии, оборотов двигателя и размеров шин. Но двигатель может оказатся недостаточно мощным и реальная максимальная скорость будет меньше, чем подсчитанная. ** Вычисление тяги и максимального угла подъема происходит без учета сил трения и сцепления колес с землей и могут быть меньше, чем подсчитанные. *** Если на автомобиль установлены редукторные мосты, то показатель КПД следует уменьшить до 82%.
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Выбираем тип редуктора
Для того, чтобы определиться с типом редуктора, нужно рассмотреть пространственное расположение всех механизмов, которые присоединяются к редуктору, их места креплений и способы монтажа.
- Цилиндрические редукторы:
- Горизонтальный тип такого редуктора подходит для схем, в которых оси входного и выходного валов между собой параллельны и при этом находятся в одной плоскости (а именно, горизонтальной);
- У вертикального цилиндрического типа оси редуктора должны располагаться в одной вертикальной плоскости;
- Планетарный или соосный цилиндрический тип используется в том случае, если оси валов находятся в разных плоскостях, но при этом расположены на одной прямой.
- Коническо-цилиндрические редукторы применяются только для тех схем, где оси валов находятся в одной плоскости (горизонтальной) и перпендикулярны друг другу.
- Червячные редукторы:
- Оси одноступенчатого червячного редуктора должны скрещиваться под прямым углом и лежать в разных плоскостях;
- У двухступенчатого червячного редуктора оси валов пересекаются под прямым углом или параллельны друг другу, но при этом обязательно лежат в разных плоскостях.
Более того, в зависимости от области применения редуктора могут оказать влияние такие факторы, как:
- Громкость работы (самый «тихий» — червячный редуктор);
- КПД или коэффициент полезного действия (самые эффективные в плане работы считаются планетарные редукторы, в то время как у двухступенчатых червячных редукторов КПД самый низкий);
- Стоимость в относительном эквиваленте (планетарные редукторы считаются самыми недорогими).
Также, производя расчет червячного редуктора, следует учитывать тот факт, что его использование в большей мере оправдано при повторяющихся кратковременных режимах эксплуатации.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
8.4: Передаточное отношение
Передачи используются не только для передачи мощности, но также для обеспечения возможности настройки механического преимущества для механизма. Как обсуждалось во введении к данному блоку, в некоторых случаях электромотор сам по себе обладает достаточной мощностью для выполнения конкретной задачи, но выходные характеристики электромотора не соответствуют требованиям. Электромотор, который вращается ОЧЕНЬ быстро, но при очень малом крутящем моменте , не подходит для подъема тяжелого груза. В таких случаях возникает необходимость использования передаточного отношения для изменения выходных характеристик и создания баланса крутящего момента и скорости.
Представьте себе велосипед: велосипедист обладает ограниченной мощностью, и хочет обеспечить максимальное использование этой мощности в любой момент времени.
Путем изменения механического преимущества изменяется скорость движения. Мощность представляет собой количество проделанной работы в единицу времени. Чем больше количество работы. тем ниже скорость ее выполнения.
В примере 8.1 показано, что если на стороне входа рычаг сместится на 1 метр, на стороне выхода рычаг сместится на 4 метра. Разница пропорциональна соотношению между длинами рычагов.
Длина на выходе / Длина на входе = 8 / 2 = 4
Интересно то, что оба расстояния преодолеваются за одно и то же время. Давайте представим, что смещение рычага на входе на 1 метр происходит за 1 секунду, так что скорость движения на входе составляет 1 метр в секунду. В то же время, на выходе смещение на 4 метра также происходит за 1 секунду, так что скорость движения здесь составляет 8 метров в секунду. Скорость на выходе БОЛЬШЕ скорости на входе за счет соотношения между длинами рычагов.
В примере 8.2 представлена та же система, что и в примере 8.1, но теперь на вход действует сила, равная 4 ньютонам. Какова равнодействующая сила на выходе?
Прежде всего, необходимо рассчитать приложенный момент в центре вращения, вызванный входной силой, с помощью формул из Блока 7:
Крутящий момент = Сила х Расстояние от центра гравитации = 4 Н х 2 м = 8 Н-м
Далее, необходимо рассчитать равнодействующую силу на выходе:
Сила = Крутящий момент / Расстояние = 8 Н-м / 8 м = 1 ньютон
Глядя на эти два примера, мы видим, что если система смещается на 1 метр под действием входной силы, равной 4 ньютона, то на выходе она сместится на 4 метра под действием силы, равной 1 ньютон. При меньшей силе рычаг смещается быстрее!
Мы можем видеть, как механическое преимущество (выраженное в форме рычагов) может быть использовано для управления входной силой в целях получения требуемого выхода. Передачи работают по тому же принципу.
Цилиндрическая прямозубая шестерня по сути представляет собой серию рычагов. Чем больше диаметр шестерни, тем длиннее рычаг.
Как видно из примера 8.3, результатом крутящего момента, приложенного к первой шестерне, является линейная сила, возникающая на кончиках ее зубьев. Эта же сила воздействует на кончики зубьев шестерни, с которой зацепляется первая шестерня, заставляя вторую вращаться по действием крутящего момента. Диаметры шестерен становятся длиной рычагов, при этом изменение крутящего момента равносильно соотношению диаметров. Если малые шестерни приводят в движение больше шестерни, крутящий момент увеличивается. Если большие шестерни приводят в движение малые шестерни, крутящий момент уменьшается.
В примере 8.4, если входная 36-зубая шестерня поворачивается на расстояние одного зуба (d = ширина 1 зуба), это означает, что она поворачивается на 1/36-ю своего полного оборота (а1 = 360 / 36 = 10 градусов). Поворачиваясь, она приводит в движение 60-зубую шестерню, заставляя последнюю смещаться также на 1 зуб. Тем не менее, для 60-зубой шестерни это означает смещение всего лишь на 1/60-ю полного оборота (а2 = 360 / 60 = 6 градусов).
Когда малая шестерня проходит определенное расстояние в заданный интервал времени, большая шестерня при этом проходить меньшее расстояние. Это означает, что большая шестерня вращается медленнее малой. Этот принцип работает в обоих направлениях. Если малые шестерни приводят в движение больше шестерни, скорость понижается. Если большие шестерни приводят в движение малые шестерни, скорость повышается.
Из примеров 8.1 — 8.4 видно, что отношение между размерами двух зацепляющихся между собой шестерен пропорционально изменению крутящего момента и скорости между ними. Это называется передаточным числом.
Как обсуждалось выше, количество зубьев шестерни прямо пропорционально ее диаметру, поэтому для расчета передаточного отношения вместо диаметра можно просто считать зубья.
Передаточное отношение выражается как (зубья ведущей шестерни) : (зубья ведомой шестерни), поэтому представленная выше пара шестерен может быть описана как 12:60 (или 36 к 60).
Передаточное число рассчитывается по формуле (зубья ведомой шестерни) / (зубья ведущей шестерни)
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
P2 |
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Калькулятор передаточных чисел кпп
Расчет передаточных чисел трансмиссии начинают с расчета передаточного числа на первой и высшей передачах. Номер высшей передачи зависит от того, сколько ступеней предполагается у коробки передач проектируемого автомобиля (три, четыре, пять. ). Передаточное число первой передачи должно обеспечивать преодоление наибольшего дорожного сопротивления движению автомобиля. В этом случае значения касательного усилия, исходя из подведенного крутящего момента двигателя при Мkmax, желательно иметь равным максимальному касательному усилию по сцеплению, т.е.
, (10)
где iтр1,тр1— соответственно передаточное число и КПД на первой передаче;
к— коэффициент нагрузки ведущих колес; для 4х2к = 0,70. 0,75; для 4х4к = 1,0;
rк— динамический радиус ведущих колес, м;
Ма— полная масса автомобиля;
g- ускорение свободного падения;
— максимальное значение коэффициента сцепления (принимается в пределах 0,7. 0,8).
Рис. 1. Внешняя скоростная характеристика карбюраторного двигателя
Цепная передача. Проектировочный расчет в Excel.
Если на вашем компьютере нет программы MS Excel, то ее в данном случае можно полноценно заменить программой OOo Calc из пакета Open Office, который можно бесплатно скачать и установить.
Расчет будем делать для передачи с двумя звездочками, без специальных натяжных устройств. Схему роликовой цепной передачи вы видите на рисунке, расположенном чуть ниже. Начинаем работу — включаем Excel и открываем новый файл. Далее будет детально описан процесс создания программы расчета.
В ячейки со светло-бирюзовой заливкой будем писать исходные данные и данные, выбранные пользователем по таблицам или уточненные (принятые) расчетные данные. В ячейках со светло-желтой заливкой считываем результаты расчетов. В ячейках с бледно-зеленой заливкой помещены мало подверженные изменениям исходные данные. Синий шрифт – это исходные данные, красный шрифт – это результаты расчетов, черный шрифт – промежуточные и не главные результаты.
Еще раз напоминаю, что в примечаниях ко всем ячейкам столбца D размещаем пояснения, как и откуда берутся или по каким формулам считаются все значения в таблице файла.
Исходные данные (блок 1):
1. Коэффициент полезного действия передачи КПД (это КПД цепной передачи и КПД двух пар подшипников качения) пишем
в ячейку D2: 0,921
2. Предварительное значение передаточного числа передачи u’ записываем
в ячейку D3: 3,150
Цепная передача должна проектироваться с передаточными числами желательно не более 7, в особых случаях – не более 10.
Частоту вращения вала малой приводной звездочки
n1
в об/мин вводим
в ячейку D4: 120,0
Частота вращения быстроходного вала передачи не должна превышать значений, указанных в примечании к ячейке D4!
Номинальную мощность привода (мощность на валу меньшей звездочки)
P1
в КВт заносим
в ячейку D5: 5,000
Расчет цепной передачи (блок 1):
5. Определяем число зубьев ведущей малой звездочки z1
в ячейке D6: =ОКРВВЕРХ(31-2*D3;1) =25
z1 =31-2* u’ с округлением в большую сторону до целого числа (желательно до нечетного, еще лучше до простого числа)
6. Вычисляем вращательный момент на валу малой звездочки T1 в Н*м
в ячейке D7: =30*D5/(ПИ()*D4)*1000 =397,9
T1 =30* P1 /(π* n1 )
7. Определяем число зубьев ведомой большой звездочки z2
в ячейке D8: =ОКРУГЛ(D3*D6;0) =79
z2 = z 1 * u’ с округлением до целого числа
Число зубьев большой звездочки не должно превышать 120!
8. Уточняем окончательное передаточное число передачи u
в ячейке D9: =D8/D6 =3,160
u = z2 / z1
9. Рассчитываем отклонение передаточного числа окончательного от предварительного delta в %
в ячейке D10: =(D9-D3)/D3*100 =0,32
delta =( u — u ’ )/ u’
Отклонение передаточного числа желательно не должно превышать 3% по модулю!
10. Частоту вращения вала большой звездочки n2 в об/мин считаем
в ячейке D11: =D4/D9 =38,0
n2 = n1 / u
Мощность на валу большой звездочки
P2
в КВт определяем
в ячейке D12: =D5*D2 =4,606
P2 = P1 * КПД
12. Вычисляем вращательный момент на валу большой звездочки T2 в Н*м
в ячейке D13: =30*D12/(ПИ()*D11)*1000 =1158,4
T2 =30* P2 /(3,14* n2 )
Исходные данные (блок 2):
Все значения коэффициентов в этом блоке назначаем в соответствии с рекомендациями, приведенными в примечаниях к соответствующим ячейкам.
13. Назначаем динамический коэффициент kд и записываем
в ячейку D14: 1,00
14. Выбираем коэффициент межосевого расстояния передачи kа и записываем
в ячейку D15: 1,00
15. Назначаем коэффициент наклона оси передачи к горизонту kн и записываем
в ячейку D16: 1,00
16. Назначаем коэффициент регулировки натяжения цепи kр и записываем
в ячейку D17: 1,25
17. Выбираем коэффициент способа смазки цепи kсм и записываем
в ячейку D18: 1,40
18. Выбираем коэффициент периодичности работы передачи kп и записываем
в ячейку D19: 1,25
Расчет цепной передачи (блок 2):
19. Вычисляем коэффициент условий эксплуатации передачи kэ
в ячейке D20: =D14*D15*D16*D17*D18*D19 =2,19
kэ = k д * k а * k н * k р * k см * kп
Далее пользователь работает с программой по циклу в диалоговом режиме.
20. Задаемся числом рядов цепи m и заносим
21. Принимаем предварительно допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейке D22: 27,0
Это примерно среднее значение при n 1 =120 об/мин по таблице в примечании к ячейке D22.
Читать также: Обмотка электродвигателя славянка схема
22. Вычисляем допускаемое давление в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =29,2
при m =1: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))
при m =2: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))*0,85
23. Определяем расчетный минимальный шаг цепи t
’
в мм
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =29,704
t ‘ =2,8*( T 1 * k э /( z 1 * [ p ] * m ))^(1/3)
24. Выбираем из стандартного ряда, приведенного в примечании к ячейке D25, ближайшее большее от расчетного значение шага цепи t
в мм и записываем
в ячейку D25: 31,750
21/2. Возвращаемся к п.21 и записываем уточненное для выбранного шага цепи t =31.750 мм допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейку D22: 26,0
22/2. Считываем новое значение допускаемого давления в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =28,1
23/2. Считываем новое значение расчетного минимального шага цепи t’
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =30,080
Выбранный нами в п.24 шаг цепи t
остался больше расчетного значения
t’
. Это хорошо, иначе нам пришлось бы выбирать из стандартного ряда новое большее значение шага цепи
t
и повторять возврат к
п.21 .
25. По выбранному шагу определяем из таблицы примечания к ячейке D26 площадь проекции шарнира цепи A
в мм2 и записываем
в ячейку D26: 262
26. Рассчитываем линейную скорость цепи v
в ячейке D27: =D6*D25*D4/60000 =1,6
v = z1 * t * n1 /60000
Линейная скорость цепи желательно не должна превышать 7 м/с для открытых передач!
27. Окружную силу Ft
в ячейке D28: =D5*1000/D27 =3149,6
Ft = P 1 *1000/ v
28. Определяем расчетное давление в шарнирах цепи p
в ячейке D29: =D28*D20/D26 =26,3
p = Ft * kэ / A
29. На этом шаге программа сравнивает расчетное давление в шарнирах цепи p
с допускаемым давлением
[p]
и выдает резюме
в объединенной ячейке B30C30D30E30: =ЕСЛИ(E29
. «) = Все хорошо: p
Если
p> [p] ,то необходимо вернуться к п.20 и выполнить расчет вновь, увеличив рядность или шаг цепи
Если
p[p] ,то, как в нашем примере, все хорошо, можно переходить к завершающему блоку расчета цепной передачи
Расчет цепной передачи (блок 3):
30. Вычисляем минимальное рекомендуемое межцентровое расстояние передачи a min в мм
в ячейке D31: =30*D25 =953
a min =30* t
31. Вычисляем максимальное рекомендуемое межцентровое расстояние передачи a max в мм
в ячейке D32: =50*D25 =1588
a max =50* t
Межосевое расстояние цепной передачи не должно превышать 80*
t!
32. Назначаем из определенного выше диапазона и конструктивных параметров предварительное межцентровое расстояние передачи a’ в мм и пишем
в ячейку D33: 1000
Межосевое расстояние желательно выбирать
из диапазона:aminaamax
33. Вычисляем расчетное число звеньев цепи Lt’
в ячейке D34: =2*D33/D25+0,5*(D6+D8)+(((D8-D6)/(2*ПИ()))^2)/(D33/ D25) =117,3
Lt’ =2* a’ / t +0,5*( z1 + z2 )+((( z2 – z1 )/(2*π))^2)/( a’ / t )
34. Выбираем число звеньев цепи Lt , округлив полученное выше значение Lt’ до ближайшего целого четного значения и записываем
в ячейку D35: 118
35. Вычисляем окончательное уточненное межцентровое расстояние цепной передачи a в мм с учетом необходимого провисания цепи
в ячейке D36: =0,25*D25*(D35- (D6+D8)/2+((D35- (D6+D8)/2)^2-8*((D8-D6)/2/ПИ())^2)^0,5)*0,996 =1007
a =0,25* t *( Lt -0,5*( z1 + z2 )+(( Lt -0,5*( z1 + z2 ))^2-8*(( z2 – z1 )/(2* π))^2)^0,5)*0,996
36. Определяем делительный диаметр ведущей малой звездочки d1
в ячейке D37: =D25/SIN (ПИ()/D6) =253,3
d 1 = t /sin(π/ z 1 )
37. Вычисляем делительный диаметр ведомой большой звездочки d2
в ячейке D38: =D25/SIN (ПИ()/D8) =798,6
d 2 = t /sin(π/ z 2 )
Проектировочный расчет в Excel цепной передачи с двумя звездочками без специальных натяжных устройств выполнен. Определены основные параметры и габаритные размеры передачи на основе частично заданных силовых и кинематических характеристик. Полученные данные можно использовать для более детального геометрического расчета звездочек и проверочных силовых расчетов.
Всегда жду ваших отзывов, вопросов, комментариев на статью, уважаемые читатели.
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-tsepnoy-peredachi (xls 55,5KB).
Классификация передач. Приводные роликовые цепи различают (рис. 77): однорядные нормальные (ПР), однорядные длиннозвенные облегченные (ПРД), однорядные усиленные (ПРУ), двух (2ПР)-, трех (ЗПР)-и четырехрядные (4ПР) и с изогнутыми пластинками (ПРИ).
Рис.77. Виды приводных цепей: а – втулочная однорядная, б – роликовая однорядная, в – роликовая двухрядная, г – роликовая с изогнутыми пластинами, д – зубчатая, е – фасонозвенная крючковая, ж – фасонозвенная штыревая.
Назначение. Цепные передачи относится к механическим передачам зацепления с гибкой связью и применяют для передачи вращательного вращения между валами расположенным на значительных расстояниях и при необходимости обеспечить постоянное передаточное отношение. Цепная передача состоит из расположенных соосно на некотором расстоянии друг от друга звездочек, и охватывающей их цепи. Вращение ведущей звездочки преобразуется во вращение ведомой благодаря сцеплению цепи с зубьями звездочек. В связи с вытягиванием цепей по меpe их износа натяжное устройство цепных передач должно регулировать натяжение цепи. Это регулирование, по аналогии с ременными передачами, осуществляют либо перемещением вала одной из звездочек, либо с помощью регулирующих звездочек или роликов.
Преимущества. Благодаря зацеплению отсутствует скольжение тягового органа. Возможность передачи движения между валами на большие расстояния (до 8М). Меньшие габариты, чем у ременных передач, особенно по ширине. Меньшие нагрузки на опоры валов передачи. Возможность передачи вращения одной цепью нескольким валам. Больший КПД.
Недостатки. Повышенный шум и вибрации вследствие удара звеньев цепи по звездочкам, которые повышаются с увеличением ее скорости. Увеличение шага цепи в процессе эксплуатации в связи с ее износом. Необходимость устройств для натяжения цепей. Отсутствие жидкостного трения в шарнирах увеличивает их износ поэтому необходима смазка периодическая или постоянная. Скорость цепи неравномерна, особенно при малых числах зубьев звездочек, что создает дополнительные динамические нагрузки и колебания передаточного числа.
Сферы применения. Цепные передачи применяют в транспортных, сельскохозяйственных, строительно-дорожных, горных и нефтяных машинах, а также в металлорежущих станках.
По мощности передачи применяются при 100КВт, (в некоторых передачах до 3000КВТ), по окружной скорости – 15М/с, по передаточным числам 7, КПД цепных передач 0,94…0,97.
Геометрический расчет. Центры шарниров цепи при зацеплении с зубьями звездочки располагаются на делительной окружности звездочек, который определяется
Где Р – Шаг цепи; – Число зубьев звездочки.
Для приводных цепей зубья звездочек определяют все размеры зубьев, а также диаметр вершин И впадин зубьев этих звездочек (рис. 78).
Минимальное межосевое расстояние Атіп Цепной передачи принимают в зависимости от передаточного числа И Передачи и условия, что угол обхвата цепью меньшей звездочки составляет не менее 120°, т. е. при И Расчет цепной передачи – 3.3 out of 5 based on 11 votes
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Читать также: Принцип работы лебедки автомобильной
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Расчет передаточных чисел коробки передач
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Расчет передаточного числа редуктора онлайн калькулятор
Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.
Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)
Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска. Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов. Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль. Нажмите кнопку «Рассчитать КПП».
Данный тюнинг-калькулятор поможет Вам просчитать изменения в поведении и характеристиках вашего внедорожника при замене колес, двигателя, коробки передач и т.д.
— Введите характеристики оборудования до и после тюнинга Вам достаточно ввести характеристики оборудования до и после тюнинга.
* Максимальная скорость вычисляется из передаточных чисел трансмиссии, оборотов двигателя и размеров шин. Но двигатель может оказатся недостаточно мощным и реальная максимальная скорость будет меньше, чем подсчитанная. ** Вычисление тяги и максимального угла подъема происходит без учета сил трения и сцепления колес с землей и могут быть меньше, чем подсчитанные. *** Если на автомобиль установлены редукторные мосты, то показатель КПД следует уменьшить до 82%.
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Цепная передача. Проектировочный расчет в Excel.
Если на вашем компьютере нет программы MS Excel, то ее в данном случае можно полноценно заменить программой OOo Calc из пакета Open Office, который можно бесплатно скачать и установить.
Расчет будем делать для передачи с двумя звездочками, без специальных натяжных устройств. Схему роликовой цепной передачи вы видите на рисунке, расположенном чуть ниже. Начинаем работу — включаем Excel и открываем новый файл. Далее будет детально описан процесс создания программы расчета.
В ячейки со светло-бирюзовой заливкой будем писать исходные данные и данные, выбранные пользователем по таблицам или уточненные (принятые) расчетные данные. В ячейках со светло-желтой заливкой считываем результаты расчетов. В ячейках с бледно-зеленой заливкой помещены мало подверженные изменениям исходные данные. Синий шрифт – это исходные данные, красный шрифт – это результаты расчетов, черный шрифт – промежуточные и не главные результаты.
Еще раз напоминаю, что в примечаниях ко всем ячейкам столбца D размещаем пояснения, как и откуда берутся или по каким формулам считаются все значения в таблице файла.
Исходные данные (блок 1):
1. Коэффициент полезного действия передачи КПД (это КПД цепной передачи и КПД двух пар подшипников качения) пишем
в ячейку D2: 0,921
2. Предварительное значение передаточного числа передачи u’ записываем
в ячейку D3: 3,150
Цепная передача должна проектироваться с передаточными числами желательно не более 7, в особых случаях – не более 10.
Частоту вращения вала малой приводной звездочки
n1
в об/мин вводим
в ячейку D4: 120,0
Частота вращения быстроходного вала передачи не должна превышать значений, указанных в примечании к ячейке D4!
Номинальную мощность привода (мощность на валу меньшей звездочки)
P1
в КВт заносим
в ячейку D5: 5,000
Расчет цепной передачи (блок 1):
5. Определяем число зубьев ведущей малой звездочки z1
в ячейке D6: =ОКРВВЕРХ(31-2*D3;1) =25
z1 =31-2* u’ с округлением в большую сторону до целого числа (желательно до нечетного, еще лучше до простого числа)
6. Вычисляем вращательный момент на валу малой звездочки T1 в Н*м
в ячейке D7: =30*D5/(ПИ()*D4)*1000 =397,9
T1 =30* P1 /(π* n1 )
7. Определяем число зубьев ведомой большой звездочки z2
в ячейке D8: =ОКРУГЛ(D3*D6;0) =79
z2 = z 1 * u’ с округлением до целого числа
Число зубьев большой звездочки не должно превышать 120!
8. Уточняем окончательное передаточное число передачи u
в ячейке D9: =D8/D6 =3,160
u = z2 / z1
9. Рассчитываем отклонение передаточного числа окончательного от предварительного delta в %
в ячейке D10: =(D9-D3)/D3*100 =0,32
delta =( u — u ’ )/ u’
Отклонение передаточного числа желательно не должно превышать 3% по модулю!
10. Частоту вращения вала большой звездочки n2 в об/мин считаем
в ячейке D11: =D4/D9 =38,0
n2 = n1 / u
Мощность на валу большой звездочки
P2
в КВт определяем
в ячейке D12: =D5*D2 =4,606
P2 = P1 * КПД
12. Вычисляем вращательный момент на валу большой звездочки T2 в Н*м
в ячейке D13: =30*D12/(ПИ()*D11)*1000 =1158,4
T2 =30* P2 /(3,14* n2 )
Исходные данные (блок 2):
Все значения коэффициентов в этом блоке назначаем в соответствии с рекомендациями, приведенными в примечаниях к соответствующим ячейкам.
13. Назначаем динамический коэффициент kд и записываем
в ячейку D14: 1,00
14. Выбираем коэффициент межосевого расстояния передачи kа и записываем
в ячейку D15: 1,00
15. Назначаем коэффициент наклона оси передачи к горизонту kн и записываем
в ячейку D16: 1,00
16. Назначаем коэффициент регулировки натяжения цепи kр и записываем
в ячейку D17: 1,25
17. Выбираем коэффициент способа смазки цепи kсм и записываем
в ячейку D18: 1,40
18. Выбираем коэффициент периодичности работы передачи kп и записываем
в ячейку D19: 1,25
Расчет цепной передачи (блок 2):
19. Вычисляем коэффициент условий эксплуатации передачи kэ
в ячейке D20: =D14*D15*D16*D17*D18*D19 =2,19
kэ = k д * k а * k н * k р * k см * kп
Далее пользователь работает с программой по циклу в диалоговом режиме.
20. Задаемся числом рядов цепи m и заносим
21. Принимаем предварительно допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейке D22: 27,0
Это примерно среднее значение при n 1 =120 об/мин по таблице в примечании к ячейке D22.
Читать также: Лерка или плашка что правильно
22. Вычисляем допускаемое давление в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =29,2
при m =1: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))
при m =2: [ p ] = [ p ‘] *(1+0,01*( z 1 -17))*0,85
23. Определяем расчетный минимальный шаг цепи t
’
в мм
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =29,704
t ‘ =2,8*( T 1 * k э /( z 1 * [ p ] * m ))^(1/3)
24. Выбираем из стандартного ряда, приведенного в примечании к ячейке D25, ближайшее большее от расчетного значение шага цепи t
в мм и записываем
в ячейку D25: 31,750
21/2. Возвращаемся к п.21 и записываем уточненное для выбранного шага цепи t =31.750 мм допускаемое давление в шарнирах цепи (при z1 =17) [p’] в МПа
в ячейку D22: 26,0
22/2. Считываем новое значение допускаемого давления в шарнирах цепи (при z1 =25) [p] в МПа
в ячейке D23: =ЕСЛИ(D21=1;D22*(1+0,01*(D6-17));D22*(1+0,01*(D6-17))*0,85) =28,1
23/2. Считываем новое значение расчетного минимального шага цепи t’
в ячейке D24: =2,8*(D7*1000*D20/D6/D21/D23)^(1/3) =30,080
Выбранный нами в п.24 шаг цепи t
остался больше расчетного значения
t’
. Это хорошо, иначе нам пришлось бы выбирать из стандартного ряда новое большее значение шага цепи
t
и повторять возврат к
п.21 .
25. По выбранному шагу определяем из таблицы примечания к ячейке D26 площадь проекции шарнира цепи A
в мм2 и записываем
в ячейку D26: 262
26. Рассчитываем линейную скорость цепи v
в ячейке D27: =D6*D25*D4/60000 =1,6
v = z1 * t * n1 /60000
Линейная скорость цепи желательно не должна превышать 7 м/с для открытых передач!
27. Окружную силу Ft
в ячейке D28: =D5*1000/D27 =3149,6
Ft = P 1 *1000/ v
28. Определяем расчетное давление в шарнирах цепи p
в ячейке D29: =D28*D20/D26 =26,3
p = Ft * kэ / A
29. На этом шаге программа сравнивает расчетное давление в шарнирах цепи p
с допускаемым давлением
[p]
и выдает резюме
в объединенной ячейке B30C30D30E30: =ЕСЛИ(E29
. «) = Все хорошо: p
Если
p> [p] ,то необходимо вернуться к п.20 и выполнить расчет вновь, увеличив рядность или шаг цепи
Если
p[p] ,то, как в нашем примере, все хорошо, можно переходить к завершающему блоку расчета цепной передачи
Расчет цепной передачи (блок 3):
30. Вычисляем минимальное рекомендуемое межцентровое расстояние передачи a min в мм
в ячейке D31: =30*D25 =953
a min =30* t
31. Вычисляем максимальное рекомендуемое межцентровое расстояние передачи a max в мм
в ячейке D32: =50*D25 =1588
a max =50* t
Межосевое расстояние цепной передачи не должно превышать 80*
t!
32. Назначаем из определенного выше диапазона и конструктивных параметров предварительное межцентровое расстояние передачи a’ в мм и пишем
в ячейку D33: 1000
Межосевое расстояние желательно выбирать
из диапазона:aminaamax
33. Вычисляем расчетное число звеньев цепи Lt’
в ячейке D34: =2*D33/D25+0,5*(D6+D8)+(((D8-D6)/(2*ПИ()))^2)/(D33/ D25) =117,3
Lt’ =2* a’ / t +0,5*( z1 + z2 )+((( z2 — z1 )/(2*π))^2)/( a’ / t )
34. Выбираем число звеньев цепи Lt , округлив полученное выше значение Lt’ до ближайшего целого четного значения и записываем
в ячейку D35: 118
35. Вычисляем окончательное уточненное межцентровое расстояние цепной передачи a в мм с учетом необходимого провисания цепи
в ячейке D36: =0,25*D25*(D35- (D6+D8)/2+((D35- (D6+D8)/2)^2-8*((D8-D6)/2/ПИ())^2)^0,5)*0,996 =1007
a =0,25* t *( Lt -0,5*( z1 + z2 )+(( Lt -0,5*( z1 + z2 ))^2-8*(( z2 — z1 )/(2* π))^2)^0,5)*0,996
36. Определяем делительный диаметр ведущей малой звездочки d1
в ячейке D37: =D25/SIN (ПИ()/D6) =253,3
d 1 = t /sin(π/ z 1 )
37. Вычисляем делительный диаметр ведомой большой звездочки d2
в ячейке D38: =D25/SIN (ПИ()/D8) =798,6
d 2 = t /sin(π/ z 2 )
Проектировочный расчет в Excel цепной передачи с двумя звездочками без специальных натяжных устройств выполнен. Определены основные параметры и габаритные размеры передачи на основе частично заданных силовых и кинематических характеристик. Полученные данные можно использовать для более детального геометрического расчета звездочек и проверочных силовых расчетов.
Всегда жду ваших отзывов, вопросов, комментариев на статью, уважаемые читатели.
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-tsepnoy-peredachi (xls 55,5KB).
Классификация передач. Приводные роликовые цепи различают (рис. 77): однорядные нормальные (ПР), однорядные длиннозвенные облегченные (ПРД), однорядные усиленные (ПРУ), двух (2ПР)-, трех (ЗПР)-и четырехрядные (4ПР) и с изогнутыми пластинками (ПРИ).
Рис.77. Виды приводных цепей: а – втулочная однорядная, б – роликовая однорядная, в – роликовая двухрядная, г – роликовая с изогнутыми пластинами, д – зубчатая, е – фасонозвенная крючковая, ж – фасонозвенная штыревая.
Назначение. Цепные передачи относится к механическим передачам зацепления с гибкой связью и применяют для передачи вращательного вращения между валами расположенным на значительных расстояниях и при необходимости обеспечить постоянное передаточное отношение. Цепная передача состоит из расположенных соосно на некотором расстоянии друг от друга звездочек, и охватывающей их цепи. Вращение ведущей звездочки преобразуется во вращение ведомой благодаря сцеплению цепи с зубьями звездочек. В связи с вытягиванием цепей по меpe их износа натяжное устройство цепных передач должно регулировать натяжение цепи. Это регулирование, по аналогии с ременными передачами, осуществляют либо перемещением вала одной из звездочек, либо с помощью регулирующих звездочек или роликов.
Преимущества. Благодаря зацеплению отсутствует скольжение тягового органа. Возможность передачи движения между валами на большие расстояния (до 8М). Меньшие габариты, чем у ременных передач, особенно по ширине. Меньшие нагрузки на опоры валов передачи. Возможность передачи вращения одной цепью нескольким валам. Больший КПД.
Недостатки. Повышенный шум и вибрации вследствие удара звеньев цепи по звездочкам, которые повышаются с увеличением ее скорости. Увеличение шага цепи в процессе эксплуатации в связи с ее износом. Необходимость устройств для натяжения цепей. Отсутствие жидкостного трения в шарнирах увеличивает их износ поэтому необходима смазка периодическая или постоянная. Скорость цепи неравномерна, особенно при малых числах зубьев звездочек, что создает дополнительные динамические нагрузки и колебания передаточного числа.
Сферы применения. Цепные передачи применяют в транспортных, сельскохозяйственных, строительно-дорожных, горных и нефтяных машинах, а также в металлорежущих станках.
По мощности передачи применяются при 100КВт, (в некоторых передачах до 3000КВТ), по окружной скорости — 15М/с, по передаточным числам 7, КПД цепных передач 0,94…0,97.
Геометрический расчет. Центры шарниров цепи при зацеплении с зубьями звездочки располагаются на делительной окружности звездочек, который определяется
Где Р — Шаг цепи; — Число зубьев звездочки.
Для приводных цепей зубья звездочек определяют все размеры зубьев, а также диаметр вершин И впадин зубьев этих звездочек (рис. 78).
Минимальное межосевое расстояние Атіп Цепной передачи принимают в зависимости от передаточного числа И Передачи и условия, что угол обхвата цепью меньшей звездочки составляет не менее 120°, т. е. при И Расчет цепной передачи — 3.3 out of 5 based on 11 votes
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Читать также: Диаметр точечных светильников для натяжных потолков
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Общее определение
Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.
Передачи с крутящим моментом
В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:
Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.
Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.
Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.
Переходной конструкцией является ременная зубчатая передача.
На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.
Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.
Характеристика зубчатой передачи
В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.
Модуль – размер между одинаковыми точками двух соседних зубьев.
Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.
Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.
Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.
Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.
Зачем нужна паразитка
При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:
- количества оборотов;
- мощности;
- направление вращения.
Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.
Виды зубчатых соединений
Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:
Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.
Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.
Недостаток косозубых зацеплений в дополнительной нагрузке на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.
Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.
В конической зубчатой передаче оси расположены под углом. Рабочий элемент нарезается по конической плоскости. Передаточное число таких пар может равняться 1, когда надо только изменить плоскость действия силы. Для увеличения мощности нарезается полукруглый зуб. Передающееся количество оборотов считается только по зубу, диаметр в основном используется при расчетах габаритов узла.
Винтовая передача имеет зуб, нарезанный под углом 45⁰. Это позволяет располагать оси рабочих элементов перпендикулярно в разных плоскостях.
У червячной передачи нет шестерни, ее заменяет червяк. Оси деталей не пересекаются. Они расположены перпендикулярно в пространстве, но разных плоскостях. Передаточное число пары определяется количеством заходов резьбы на червяке.
Кроме перечисленных производят и другие виды передач, но они встречаются крайне редко и к стандартным не относятся.
Многоступенчатые редукторы
Как подобрать нужное передаточное число. Двигатель обычно выдает несколько тысяч оборотов в минуту. На выходе – колесах автомобиля и шпинделе станка, такая скорость вращения приведет к аварии. Мощности исполняющего механизма не хватит, чтобы рабочий инструмент мог резать металл, а колеса сдвинули автомобиль. Одна пара зубчатого зацепления не сможет обеспечить требуемое понижение или ведомая деталь должна иметь огромные размеры.
Создается многоступенчатый узел с несколькими парами зацеплений. Передаточное число редуктора считается как произведение чисел каждой пары.
Uр – передаточное число редуктора;
Перед тем как подобрать передаточное число редуктора, надо определиться с количеством пар, направлением вращения выходного вала, и делать расчет в обратном порядке, исходя из максимально допустимых габаритов колес.
В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.
Редуктор и коробка скоростей
Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.
Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.
Трансмиссия автомобиля
В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение — передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.
Читать также: Сварка металлоконструкций расценка в смете
В состав трансмиссии входит несколько редукторов. Это, прежде всего:
- коробка передач – скоростей;
- дифференциал.
Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.
Посредством переключения – перемещения вала, шестерни на валу соединяются поочередно с разными колесами. При включении задней скорости, через паразитку меняется направление вращения, автомобиль в результате движется назад.
Дифференциал представляет собой конический редуктор с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
P2 |
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
http://7road.ru/komplektacii/raschet-kpp-kalkulyator.html
Источник Источник http://rosavto-spb.ru/avtonovosti/tablica-peredatochnyh-chisel-kpp.html
Источник http://avto-lover.ru/novosti/oboroty-i-skorost-tablica.html