Системы питания двигателя: система питания бензинового двигателя — компания КЭРЭЛ
Системы питания двигателя
Системы питания бензиновых и дизельных двигателей значительно отличаются, поэтому рассмотрим их по отдельности. Итак, что такое система питания автомобиля?
Система питания бензинового двигателя
Системы питания бензиновых двигателей бывают двух типов — карбюраторная и впрысковая (инжекторная). Поскольку на современных автомобилях карбюраторная система уже не применяется ниже рассмотрим лишь основные принципы ее работы. При необходимости вы легко сможете найти дополнительную информацию по ней в многочисленных специальных изданиях.
Система питания бензинового двигателя, независимо от типа двигателя внутреннего сгорания, предназначена для хранения запаса топлива, очистки топлива и воздуха от посторонних примесей, а также подачи воздуха и топлива в цилиндры двигателя.
Для хранения запаса топлива на автомобиле служит топливный бак. На современных автомобилях применяются металлические или пластмассовые топливные баки, которые в большинстве случаев расположены под днищем кузова в задней части.
Систему питания бензинового двигателя можно условно разделить на две подсистемы — подачи воздуха и подачи топлива. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.
Система подачи воздуха практически одинакова для всех типов двигателей внутреннего сгорания. Воздух, предназначенный для подачи в цилиндры двигателя, очищается от пыли воздушным фильтром, который расположен в моторном отсеке автомобиля. Воздух очищается сменным фильтрующим элементом, который выполнен из специальной бумаги с мелкими порами. Из следующей главы можно будет узнать электронная система управления двигателем — что это такое и как осуществляется диагностика электронной системы управления двигателем.
Дальнейший путь очищенного воздуха зависит от типа системы питания и будет рассмотрен ниже. А в одной из следующих глав можно будет узнать система питания дизельного двигателя: устройство системы питания дизельного двигателя.
Система питания бензинового двигателя карбюраторного типа
В карбюраторном двигателе система подачи топлива работает следующим образом.
Топливный насос (бензонасос) подает топливо из бака в поплавковую камеру карбюратора. Топливный насос, обычно мембранный, расположен непосредственно на двигателе. Привод насоса осуществляется при помощи штока-толкателя эксцентриком на распределительном валу.
Очистка топлива от загрязнений совершается в несколько этапов. Самая грубая очистка происходит сеточкой на заборнике в топливном баке. Затем топливо фильтруется сеточкой на входе в бензонасос. Также сетчатый фильтр-отстойник установлен на входном патрубке карбюратора.
В карбюраторе очищенный воздух из воздушного фильтра и бензин из бака смешиваются и подаются во впускной трубопровод двигателя.
Карбюратор устроен таким образом, чтобы обеспечить оптимальное соотношение воздуха и бензина в смеси. Это соотношение (по массе) составляет приблизительно 15 к 1. Топливовоздушная смесь с таким соотношением воздуха к бензину называется нормальной.
Нормальная смесь необходима для работы двигателя в установившемся режиме. На других режимах двигателю могут потребоваться топливовоздушные смеси с иным соотношением компонентов.
Обедненная смесь (15-16,5 частей воздуха к одной части бензина) имеет меньшую скорость сгорания по сравнению с обогащенной, но зато происходит полное сгорание топлива. Обедненная смесь применяется при средних нагрузках и обеспечивает высокую экономичность, а также минимальный выброс вредных веществ.
Бедная смесь (более 16,5 частей воздуха к одной части бензина) горит очень медленно. На бедной смеси могут возникать перебои в работе двигателя.
Обогащенная смесь (13-15 частей воздуха к одной части бензина) обладает наибольшей скоростью сгорания и используется при резком увеличении нагрузки.
Богатая смесь (менее 13 частей воздуха к одной части бензина) горит медленно. Богатая смесь необходима при пуске холодного двигателя и последующей работе на холостом ходу.
Для создания смеси, отличной от нормальной, карбюратор снабжен специальными устройствами — экономайзер, ускорительный насос (обогащенная смесь), воздушная заслонка (богатая смесь).
В карбюраторах разных систем эти устройства реализованы по-разному, поэтому здесь мы не будем рассматривать их более подробно. Суть просто в том, что система питания бензинового двигателя карбюраторного типа содержит такие конструктивные элементы.
Для изменения количества топливовоздушной смеси и, следовательно, частоты вращения коленчатого вала двигателя служит дроссельная заслонка. Именно ею управляет водитель, нажимая или отпуская педаль газа.
Система питания бензинового двигателя инжекторного типа
На автомобиле с системой впрыска топлива водитель тоже управляет двигателем посредством дроссельной заслонки, но на этом аналогия с карбюраторной системой питания бензинового двигателя заканчивается.
Топливный насос расположен непосредственно в баке и имеет электропривод.
Электробензонасос обычно объединен с датчиком уровня топлива и сетчатым фильтром в узел, получивший название топливный модуль.
На большинстве впрысковых автомобилей топливо из топливного бака под давлением поступает в сменный топливный фильтр.
Топливный фильтр может быть установлен под днищем кузова либо в моторном отсеке.
Топливные трубопроводы подсоединяются к фильтру резьбовыми или быстросъемными соединениями. Соединения уплотнены кольцами из бензостойкой резины или металлическими шайбами.
В последнее время многие автопроизводители стали отказываться от применения подобных фильтров. Очистка топлива производится только фильтром, установленным в топливном модуле.
Замена такого фильтра не регламентирована планом технического обслуживания.
Системы впрыска топлива бывают двух основных типов — центральный впрыск топлива (моновпрыск) и распределенный впрыск, или, как его еще называют, многоточечный.
Центральный впрыск стал для автопроизводителей переходным этапом от карбюратора к распределенному впрыску и на современных автомобилях применения не находит. Это связано с тем, что система центрального впрыска топлива не позволяет выполнить требования современных экологических стандартов.
Агрегат центрального впрыска похож на карбюратор, только вместо смесительной камеры и жиклеров внутри установлена электромагнитная форсунка, которая открывается по команде электронного блока управления двигателем. Впрыск топлива происходит на вход впускного трубопровода.
В системе распределенного впрыска количество форсунок равно количеству цилиндров.
Форсунки установлены между впускным трубопроводом и топливной рампой. В топливной рампе поддерживается постоянное давление, которое обычно составляет около трех бар (1 бар равен примерно 1 атм). Для ограничения давления в топливной рампе служит регулятор, который стравливает излишки топлива обратно в бак.
Раньше регулятор давления устанавливали непосредственно на топливной рампе, а для соединения регулятора с топливным баком использовалась обратная топливная магистраль. В современных системах питания бензинового двигателя регулятор располагают в топливном модуле и необходимость в обратной магистрали отпала.
Топливные форсунки открываются по командам электронного блока управления, и происходит впрыск топлива из рампы во впускной трубопровод, где топливо смешивается с воздухом и поступает в виде смеси в цилиндр.
Команды на открытие форсунок вычисляются на основании сигналов, поступающих от датчиков электронной системы управления двигателем. Тем самым обеспечивается синхронизация работы системы подачи топлива и системы зажигания.
Система питания бензинового двигателя инжекторного типа обеспечивает большую производительность и возможность соответствия более высоким экологическим стандартам, чем карбюраторного.
Устройство топливной системы
Работа силовой установки внутреннего сгорания основана на процессе преобразования энергии, выделяемой при горении специальной смеси, в механическое действие. Но чтоб этот процесс происходил правильно, требуется тщательная ее подготовка и подача ее в цилиндры. И это в силовом агрегате выполняет топливная система.
В задачу этой системы входит подача топлива (одного из компонентов смеси) и смешивание его с воздухом, в результате чего и образуется горючая смесь, перед тем, как все это попадет в цилиндр.
Распространенные типы систем питания
На современных автомобилях наибольшее распространение получили два вида топлива – дизельное и бензин. Немного от них отстает газ, хотя он тоже достаточно часто используется.
Используемое топливо напрямую влияет на конструкцию и принцип функционирования топливной системы. Изначально на авто, работающих на бензине, использовался карбюратор, как основной элемент, обеспечивающий смесеобразование. Сейчас такая система питания считается устаревшей и на авто не применяется, а на смену ей пришел инжектор.
Что касается дизеля, то у него своя система – дизельная. Примечательно, что принцип функционирования ее у дизеля неизменен с момента создания, менялась только конструкция. К тому же, принцип этой системы в некотором роде лежит и в основе работы инжектора. Поэтому следует более подробно рассмотреть каждый из видов используемых сейчас систем питания.
Инжектор и его устройство
Суть функционирования инжектора лежит в том, что топливо принудительно впрыскивается в проходящий поток воздуха. При этом подача бензина осуществляется под давлением, что обеспечивает его распыление, тем самым улучшается его смешивание с воздухом.
Если рассмотреть любую топливную систему, то состоит она из двух основных составляющих – первая обеспечивает поступление воздуха, вторая – топлива.
Воздушная часть, по сути, идентична на всех моторах, в том числе и инжекторном. Представляет она собой объемный канал, на конце которого установлен фильтр, очищающий воздух от примесей. Этот канал соединен с впускным коллектором, а тот в свою очередь ведет к впускным клапанам системы ГРМ.
Всасывание воздуха осуществляется самим двигателем. При движении поршня (на такте впуска) над ним образуется разряжение. При этом открывается впускной клапан, и это движение сопровождается втягиванием воздуха в цилиндр. В общем, все достаточно просто.
А вот устройство и функционирование топливной части значительно сложнее. Состоит она из ряда элементов, каждый из которых выполняет свои функции.
Топливная система состоит из:
- бак с системой вентиляции;
- электрический бензонасос;
- фильтр тонкой очистки;
- регулятор давления;
- трубопроводы (подачи, обратного слива);
- топливная рампа;
- форсунки.
Топливная система инжектора
Бак является вместилищем бензина, откуда он поступает далее в систему. В инжекторной системе бензонасос располагается непосредственно в баке, и в задачу его входит закачка бензина под давлением в остальные составляющие части.
Бензин из насоса сначала попадает в подающую магистраль, ведущую к фильтру. Проходя очистной элемент, из топлива удаляются мелкие примеси. Из фильтра бензин по той же магистрали подается на регулятор, поскольку давление в системе должно держаться в строго заданных параметрах. Выравнивание давления происходит очень просто – лишняя часть топлива по сливной магистрали возвращается в бак.
После регулятора бензин подается на топливную рампу, которая распределяет его по форсункам. По сути, рампа является соединительной трубкой. В задачу же форсунок входит впрыск топлива в проходящий поток воздуха.
Существует несколько видов топливной системы инжектора, отличающиеся по некоторым конструктивным решениям. Так, первые инжекторы были моновпрысковыми, то есть у них использовалась только одна форсунка, установленная во впускной коллектор. В такой конструкции рампа отсутствовала, как таковая.
Сейчас же используются инжекторы с многоточечным впрыском (распределенным), где на каждый цилиндр предусмотрена своя форсунка, и здесь рампа уже используется. При этом форсунки все также устанавливаются во впускной коллектор, только каждая в свой канал.
Самым современным является инжектор с прямым впрыском. Это тоже система распределенного впрыска, у нее подача бензина осуществляется напрямую в цилиндр.
Также устройство топливной системы инжектора имеет еще одну составляющую часть – электронную, которая включает в себя блок управления и ряд датчиков. В задачу ее входит контроль режима работы силового агрегата и определения количества подаваемого топлива. Именно эта составляющая регулирует работу форсунок.
Принцип работы инжектора
Работает инжекторная система питания так: при повороте ключа зажигания в работу включается бензонасос, заполняя всю топливную составляющую бензином. При включении стартера, в цилиндры начинает засасываться воздух.
Электронная же составляющая посредством датчиков собирает информацию о требуемых ей параметрах силовой установки и на их основе проводит расчеты длительности времени открытия форсунок. После чего она подает электрический импульс на форсунки и те впрыскивают нужное количество бензина в проходящий по коллектору поток воздуха, после чего происходит их смешивание и подача в цилиндры. Это упрощенное описание принципа работы бензиновой топливной системы, в действительности все выглядит несколько сложнее.
Дизель и его особенности
Принцип работы топливной системы дизеля отличается от бензиновой, что сказывается и на особенностях функционирования системы подачи топлива.
Коснемся только отличий, касающихся топливной составляющей. Первое из них – это то, что у дизеля смесеобразование внутреннее. То есть, компоненты смеси подаются в цилиндры по отдельности и смешиваются они уже там. А второе отличие заключается в том, что воспламенение смеси производится от сжатия, поэтому давление в цилиндрах дизеля (компрессия) почти вдвое выше, чем у бензинового агрегата. И оба этих отличия вносят свои коррективы в устройство топливной системы дизеля.
Как ранее указывалось, система состоит из двух основных составляющих – воздушной и топливной. Дизеля это тоже касается.
Относительно воздушной части, то она мало отличается от бензиновой. Единственное, у дизеля используется более хороший фильтр, поскольку этот мотор очень чувствителен к чистоте воздуха.
Топливная составляющая тоже частично похожа на инжекторную, хотя есть и некоторые особые элементы. Всего же в конструкцию входит:
- бак;
- магистрали (низкого и высокого давления, подающие и сливные);
- два фильтрующих элемента (грубой и тонкой очистки);
- топливоподкачивающий насос (обычно входит в конструкцию ТНВД);
- топливный насос высокого давления (ТНВД);
- форсунки;
Топливная система дизельного двигателя
Ранее вся система питания была полностью механической, сейчас же все больше в конструкции появляется электронных частей. Но чтобы было понятнее, рассмотрим все на примере механической системы.
Топливо находится в баке, откуда за счет работы топливоподкачивающей помпы по подающей магистрали низкого давления подается в фильтрующий элемент грубой очистки.
После этого фильтра по той же магистрали подается во второй фильтр – тонкой очистки. И только после этого топливо подается в ТНВД.
Основными рабочими элементами этого насоса являются плунжерные пары, состоящие из поршня и гильзы. Сам насос работает от коленвала и внутри его установлен кулачковый вал. Именно этот вал приводит в действие плунжерную пару, и за счет их работы значительно повышается давление топлива.
После ТНВД дизтопливо по подающим магистралям, но уже высокого давления подается на форсунки.
Принцип функционирования
Воздушную часть и топливную систему дизеля до ТНВД — рассматривать особо нечего. Поэтому более подробно коснемся только участка «насос высокого давления – форсунка».
Форсунка в механической системе работает за счет давления топлива. В ней задается порог открытия, при превышении которого топливо начинает впрыскиваться. И чем выше будет это давление, тем больше топлива подастся в цилиндр (оно будет впрыскиваться, пока давление не упадет ниже установленного порога).
На поршне плунжерной пары насоса имеются специальные проточки, благодаря которым за счет проворота относительно них гильзы удается регулировать количество топлива, подвергающегося сжатию.
Участок «ТНВД-форсунка» полностью заполнена топливом (наличие воздуха не допускается), но давления его недостаточно, чтобы открыть форсунку. Плунжерная же пара при срабатывании сначала сжимает порцию топлива, а затем выталкивает его в магистраль. В результате в указанном участке резко повышается давление, что и обеспечивает открытие форсунки и попадание топлива в цилиндр.
Количество подаваемого в цилиндры топлива регулируется изменением положения гильзы плунжерной пары. Проворачивая ее в нужную сторону, можно дозировать количество топлива, которое будет сжиматься в насосе перед попаданием в магистраль.
Конечно, современные дизельные системы питания конструктивно более совершенны, но принцип их работы неизменен. Поэтому все доработки, в основном, касаются повышения точности и количества дозировки.
4.11 Система питания (топливная система). Основные отличия бензиновых двигателей от дизельных
Общее устройство системы питания
Назначение и основные части системы питания
Система питания любого двигателя внутреннего сгорания служит для приготовления горючей смеси, за счет сгорания которой в цилиндрах двигателя осуществляется его работа. Горючая смесь состоит из топлива и воздуха, смешанных в определенной пропорции.
В систему питания бензинового двигателя входят топливный бак, топливный насос, топливный фильтр, топливопроводы, карбюратор/топливные форсунки, топливная рампа. Схематическое изображение системы питания бензинового двигателя приведено на рисунке 4.46.
Рисунок 4.46 Основные части топливной системы современного бензинового двигателя.
Рисунок 4.47a Схема карбюраторного бензинового двигателя.
Примечание
Максимально упрощенно работа системы питания двигателя в целом описана далее.
Топливо из бака посредством насоса подводится к карбюратору, где смешивается в определенной пропорции с воздухом, проходящим через воздухоочиститель (схематически изображено на рисунке 4.47 а). Если же на двигателе установлена система впрыска, то топливо, подводится к форсункам, которые впрыскивают его во впускной коллектор или непосредственно в цилиндр (подробнее устройства и работы системы впрыска мы будем касаться ниже). Полученная горючая смесь по впускному коллектору поступает в цилиндры двигателя, где и сгорает. Отработавшие газы из цилиндров отводятся через выпускной коллектор и глушитель.
Топливо для питания бензиновых двигателей
Само собой разумеется, что для работы бензинового двигателя необходим бензин.
Внимание
Бензин является легким жидким топливом и представляет собой светлую жидкость, которая испаряется на воздухе и легко воспламеняется.
Основными свойствами бензина являются испаряемость, теплотворность и антидетонационная стойкость. Для простого обывателя определяющей характеристикой является антидетонационная стойкость.
Антидетонационная стойкость определяет возможную величину степени сжатия двигателя.
Примечание
Детонация – сгорание топлива с такой скоростью, что его можно смело называть взрывом (2000 м/сек и выше против 20-40 м/сек при нормальном сгорании), который протекает при чрезвычайно высоких температурах с резким повышением давления в цилиндре. Возникает при использовании топлива с несоответствующей степени сжатия двигателя антидетонационной стойкостью.
При детонационном сгорании смеси в двигателе слышны резкие металлические стуки и звон, объясняемые ударами звуковых волн высокого давления о стенки камер сгорания, цилиндров и днищ поршней и возникновением вибрации в деталях. При этом в результате неполного сгорания топлива, усиленной теплоотдачи и увеличения механических потерь мощность и экономичность двигателя резко снижаются.
Внимание
Длительная работа при детонационном сгорании может привести не только к повышенному износу деталей двигателя, но даже к их поломке или образованию крупных дефектов в виде трещин и изгиба деталей с последующим их разрушением.
Поэтому если во время движения со стороны двигателя начали доноситься постоянные звонкие металлические удары, лучше остановиться. В противном случае появится перспектива капитального ремонта двигателя или его замены.
Примечание
Детонация может быть устранена путем уменьшения нагрузки на двигатель (переход на более низкую передачу) и прикрытия дроссельной заслонки.
Показателем, характеризующим антидетонационные свойства бензина, является его октановое число. Чем больше октановое число бензина, тем меньше он детонирует и тем большая степень сжатия может быть принята для двигателя.
Продаваемые на топливном рынке бензины имеют свое обозначение. Например, «А-95», где «А» говорит нам о том, что бензин этот «автомобильный», а число после буквы обозначает октановое число.
Смесеобразование и составы горючей смеси
Смесеобразованием называют процесс смешивания мелко распыленного топлива с воздухом.
Необходимо, чтобы приготовляемая смесь, называемая горючей смесью, удовлетворяла двум основным требованиям:
1) смесь при воспламенении в цилиндре двигателя должна сгорать очень быстро, в промежуток времени, измеряемый тысячными долями секунды, чтобы обеспечить соответствующее давление газов на поршень в начале его рабочего хода;
2) бензин, находящийся в горючей смеси, должен сгорать полностью, чтобы обеспечить наибольшее выделение тепла и повышение экономичности работы двигателя.
Смесь может быстро и полно сгорать при условии, что бензин с воздухом смешивается в строго определенной весовой пропорции и происходит очень тщательное распыление и испарение бензина в воздухе и их перемешивание.
При этом каждая мельчайшая частица топлива будет окружена частицами кислорода в требуемом количестве, что и обеспечит одновременное быстрое и полное сгорание всей смеси.
В зависимости от весового соотношения бензина и воздуха различают следующие виды смесей: нормальная, обедненная, бедная, обогащенная, богатая.
Нормальной называется смесь, в которой на 1 кг бензина приходится примерно 15 кг воздуха. Такое количество воздуха теоретически необходимо для полного сгорания топлива. При такой смеси двигатель работает устойчиво со средними показателями по мощности и экономичности.
Обедненной называется смесь, в которой имеется избыток воздуха против нормального количества топлива (примерно 16,5 кг, а то и больше, на 1 кг).
При работе на обедненной смеси мощность двигателя вследствие замедления скорости сгорания смеси несколько снижается, но экономичность заметно повышается, так как расходуется меньшее количество топлива.
Бедной называется смесь, имеющая значительный избыток воздуха. Из-за относительно большого расстояния между частицами распыленного в воздухе бензина бедная смесь горит медленно и давление газов в цилиндре двигателя понижается. Вследствие медленного горения смеси большая часть тепла поглощается стенками цилиндров и охлаждающей их водой, что вызывает перегрев двигателя. Двигатель на бедной смеси работает неустойчиво, мощность его падает, значительно возрастает удельный расход топлива (расход топлива на единицу мощности).
Обогащенной называется смесь, имеющая незначительный недостаток воздуха против нормального количества (около 13 кг на 1 кг топлива). Скорость сгорания обогащенной смеси возрастает, в результате чего давление газов в цилиндре к началу рабочего хода поршня увеличивается. Поэтому при работе на обогащенной смеси двигатель развивает наибольшую мощность, но при этом наблюдается несколько повышенный расход топлива.
Богатой называется смесь, имеющая значительный недостаток воздуха по сравнению с нормальным количеством. В такой смеси вследствие недостатка кислорода бензин сгорает не полностью, что вызывает снижение мощности двигателя при значительном расходе топлива. Несгоревшие частицы топлива в виде копоти частично отлагаются внутри цилиндров, а основная часть несгоревших частиц топлива выбрасывается в выпускной трубопровод и выходит из него в виде черного дыма. В результате догорания несгоревшего топлива в выпускном трубопроводе образуются хлопки и выстрелы, что и является внешним признаком сильного обогащения смеси.
Исходя из рассмотренных свойств различных составов горючей смеси, можно сделать вывод, что, если двигатель по условиям работы не должен развивать полной мощности (при средних нагрузках), самой выгодной является обедненная смесь, так как расход топлива при этом значительно снизится. Образующееся при этом некоторое снижение мощности двигателя при работе его с неполной нагрузкой значения не имеет. При больших нагрузках целесообразнее работать на обогащенной смеси, так как двигатель при этом развивает наибольшую мощность. Несколько же увеличенный расход топлива вследствие кратковременности работы двигателя на данном режиме не вызывает заметного увеличения общего расхода топлива за большой период времени.
Работа на бедной или богатой смесях, вызывающих снижение мощности и экономичности двигателя, недопустима.
Простейший карбюратор
Все, даже самые современные из тех, что закончили свой век в середине девяностых годов ХХ-го века, карбюраторы в основе своей работают по принципу, который можно описать на примере простейшего карбюратора. Он-то ниже и будет описан и представлен на рисунке 4.47 b.
Рисунок 4.47b Простейший карбюратор.
Карбюратором называется прибор, обеспечивающий смешивание бензина с воздухом в определенной пропорции и тщательное распыление бензина в воздухе.
Обратив внимание на рисунок 4.47 b можно с уверенностью сказать, что действительно, ничего сложного в карбюраторе нет! Он состоит из следующих частей: поплавковой камеры с поплавком и игольчатым клапаном, дозирующего устройства с жиклером и распылителем, смесительной камеры с диффузором, дроссельной заслонкой и воздушной заслонкой. Смесительная камера карбюратора соединяется со впускным коллектором двигателя.
Поплавковая камера служит для поддержания постоянного уровня топлива в распылителе жиклера. При помощи поплавка с игольчатым клапаном топливо в камере и распылителе поддерживается на постоянном уровне — на 1—1,5 мм выше нижнего конца распылителя. Такой уровень обеспечивает легкое высасывание топлива из распылителя и устраняет вытекание топлива из него при неработающем карбюраторе. В карбюратор, изображенный на рисунке 4.47, топливо из топливного бака поступает самотеком благодаря вездесущей на Земле силе тяжести.
В момент понижения уровня топлива в камере поплавок опускается и открывает игольчатый клапан, топливо начинает поступать в камеры. По достижении нормального уровня, топливо поднимет поплавок, который с помощью игольчатого клапана перекроет поступление топлива в поплавковую камеру.
Распылитель служит для подачи топлива в центр смесительной камеры, где оно распыляется. Он представляет собой тонкую трубку, входящую в смесительную камеру и сообщающуюся через жиклер с поплавковой камерой.
Жиклер дозирует количество топлива, проходящего к распылителю. Он выполнен в виде пробки с калиброванным отверстием.
Смесительная камера служит для смешивания топлива с воздухом и представляет собой короткий прямой или изогнутый патрубок, одним концом соединенный со впускным трубопроводом двигателя, а другим концом — с воздухоочистителем, через который в карбюратор проходит очищенный воздух.
Диффузор обеспечивает увеличение скорости воздушного потока в центре смесительной камеры и создает разрежение около конца распылителя, что необходимо для высасывания топлива из распылителя и лучшего его распыления. Конструктивно диффузор представляет собой короткий патрубок, суженный внутри и устанавливаемый в смесительной камере около конца распылителя.
Дроссельной заслонкой изменяют проходное сечение отверстия для горючей смеси и тем самым регулируют количество горючей смеси, поступающей из карбюратора в цилиндр двигателя. В соответствии с количеством поступающей в двигатель смеси изменяется мощность двигателя и число оборотов коленчатого вала.
Воздушной заслонкой можно уменьшить проходное сечение для воздуха, поступающего в карбюратор, и тем самым увеличить разрежение в смесительной камере, а следовательно, увеличить подачу топлива. Воздушную заслонку обычно используют только при пуске двигателя и управляют ею из кабины водителя.
Теперь опишем работу карбюратора. При вращении коленчатого вала двигателя во время тактов впуска, происходящих в его цилиндрах, через смесительную камеру карбюратора проходит воздух. Внутри диффузора скорость воздушного потока значительно возрастает и около конца распылителя получается разрежение. При этом топливо из распылителя поступает в смесительную камеру струйками, которые распыляются на мельчайшие частицы проходящим с большой скоростью воздухом. Топливо перемешивается с воздухом, испаряется в нем, и полученная горючая смесь поступает в цилиндры двигателя по впускному трубопроводу. Поплавковая камера с помощью поплавка и игольчатого клапана непрерывно поддерживает в распылителе нормальный уровень топлива (не забудьте, мы описываем простейший карбюратор, в котором нет насоса).
При управлении автомобилем водитель, по сути, устанавливает дроссельную заслонку карбюратора в различные положения, и в цилиндры двигателя поступает большее или меньшее количество горючей смеси, в результате чего получается необходимая мощность двигателя и скорость движения автомобиля.
Рабочие режимы двигателя и требования к карбюратору
В данном разделе мы будем рассматривать различные режимы работы карбюратора в зависимости от условий работы двигателя. Также приведем требования к функциям карбюратора и увидим, как должен преобразоваться конструктивно простейший карбюратор, чтобы удовлетворить все поставленные перед ним задачи.
Различают следующие основные рабочие режимы двигателя:
- пуск (говорит сам за себя);
- холостой ход (режим, при котором необходимо поддерживать обороты холостого хода, об этом сказано в примечании);
Примечание
Обороты холостого хода — это минимальные обороты, при которых двигатель может работать устойчиво без нагрузки. Вы запустили двигатель, при этом никакого движения и воздействия на педаль газа не происходит.
- средние нагрузки (движетесь по незагруженной трассе/дороге, без особых ускорений – равномерно);
- полная нагрузка (начало движения автомобиля, драг-рейсинг и все в этом духе);
- быстрый переход со средней нагрузки на полную нагрузку (в основном, при обгоне).
В зависимости от режима в цилиндры двигателя необходимо не только подавать различное количество горючей смеси, но и использовать различное соотношение компонентов для ее получения.
При пуске двигателя в его цилиндры должно поступать большее количество бензина. Это достигается путем сильного обогащения смеси в результате усиленной подачи топлива в смесительную камеру карбюратора и на стенки впускного коллектора.
Когда двигатель запускается, разрежения, которое создается в диффузоре карбюратора, недостаточно для того, чтобы топливо начало поступать через распылитель. Чтобы создать так необходимое для пуска двигателя разрежение, используют воздушную заслонку, которую на время пуска прикрывают, вследствие этого через распылитель начинает поступать необходимое количество топлива. После того, как двигатель начал работать и прогрелся, воздушную заслонку снова полностью открывают.
Холостой ход
На холостом ходу для работы требуется небольшое количество топлива, однако оно должно быть достаточно обогащенным, чтобы этого хватило для устойчивой работы двигателя.
В простейшем карбюраторе, рассчитанном на нормальную работу при прикрытии дроссельной заслонки, для работы двигателя с малым числом оборотов холостого хода разрежение в диффузоре уменьшается настолько, что топливо из распылителя не поступает совсем, поэтому вводится система холостого хода, которая позволяет работать двигателю независимо от разрежения в диффузоре.
Средние нагрузки
На средних нагрузках (от малых и до 85% от полной нагрузки) для получения наилучших показателей экономичности необходимо подавать различное количество топливовоздушной смеси, но всегда одного вида — немного обедненной.
Примечание
Жиклер – это похожий на болт, только без головки, элемент с просверленным насквозь отверстием, размер которого подобран с высокой точностью (его называют калиброванным).
Примечание
В простейшем карбюраторе путем подбора жиклера соответствующего диаметра и диффузора можно получать смеси требуемого состава только при некотором постоянном, например среднем, положении дроссельной заслонки.
При дальнейшем открытии заслонки смесь, приготовляемая карбюратором, начинает обогащаться. Происходит это потому, что в этом случае значительно возрастает разрежение в диффузоре, вследствие чего сопротивление вытеканию топлива из жиклера становится меньше, чем при малом разрежении в диффузоре. Поэтому количество топлива, поступающего в смесительную камеру, увеличивается, но не пропорционально увеличению количества проходящего воздуха, что и приводит к обогащению смеси. При прикрытии заслонки смесь начинает обедняться. Для поддержания примерно постоянного наиболее выгодного состава смеси при различном открытии дроссельной заслонки на средних нагрузках, т. е. для компенсации смеси, в карбюраторе должно быть специальное устройство (например, экономайзер).
Полная нагрузка
При полной нагрузке двигателя топливовоздушная смесь, подаваемая в его цилиндры, должна быть обогащенной, что необходимо для получения от двигателя наибольшей мощности. Простейший карбюратор не обеспечивает такого обогащения. Для выполнения этого требования в карбюратор нужно ввести специальное устройство, называемое экономайзером.
При быстром открытии дроссельной заслонки (нажатии на педаль газа) необходимо подавать больше бензина, обогащая смесь для того, чтобы двигатель быстро увеличивал число оборотов, повышая мощность.
При быстром открытии дроссельной заслонки в простейшем карбюраторе в первый момент получается сильное обеднение смеси, в результате чего скорость набора оборотов (приемистость) двигателя ухудшается. Объясняется это тем, что воздух, имеющий меньшую плотность и обладающий хорошей подвижностью, при открытии заслонки сразу устремляется в смесительную камеру в значительном количестве. Топливо вследствие большей плотности менее подвижно и не успевает в первый момент быстро проходить через жиклер, поэтому смесь обедняется. Для повышения приемистости двигателя в карбюратор вводят специальное устройство, называемое ускорительным насосом.
Примечание
Таким образом, простейший карбюратор при различных режимах работы двигателя не обеспечивает питание его горючей смесью надлежащего состава и должен быть оснащен дополнительными устройствами: для компенсации смеси, для легкого пуска двигателя, для работы двигателя на холостом ходу, для обогащения смеси при полной нагрузке и для улучшения приемистости двигателя.
Рисунок 4.48 Карбюратор семейства автомобилей ВАЗ 2108/2109 «Солекс».
1 – рычаг привода ускорительного насоса; 2 – регулировочный винт диафрагмы пускового устройства; 3 – диафрагма пускового устройства; 4 – воздушный канал пускового устройства; 5 – электромагнитный запорный клапан; 6 – топливный жиклер системы холостого хода; 7 – главный воздушный жиклер первой камеры; 8 – воздушный жиклер системы холостого хода; 9 – воздушная заслонка; 10 – распылитель главной дозирующей системы первой камеры; 11 – распылитель ускорительного насоса с шариковым клапаном; 12 – распылитель главной дозирующей системы второй камеры; 13 – распылитель эконостата; 14 – главный воздушный жиклер второй камеры; 15 – воздушный жиклер переходной системы второй камеры; 16 – балансировочный канал поплавковой камеры; 17 – поплавковая камера; 18 – топливный (игольчатый) клапан; 19 – топливовозвратный штуцер с жиклером; 20 – сетчатый фильтр; 21 – топливоподводящий штуцер; 22 – диафрагма экономайзера мощностных режимов; 23 – топливный жиклер экономайзера мощностных режимов; 24 – шариковый клапан экономайзера мощностных режимов; 25 – поплавок; 26 – топливный жиклер эконостата с трубкой; 27 – топливный жиклер переходной системы второй камеры с трубкой; 28 – эмульсионная трубка второй камеры; 29 – главный топливный жиклер второй камеры; 30 – выходное отверстие переходной системы второй камеры; 31, 33 – дроссельные заслонки; 32 – демпфирующий жиклер; 34 – щель переходной системы первой камеры; 35 – выходное отверстие системы холостого хода; 36 – блок подогрева карбюратора; 37 – регулировочный винт состава «качества» смеси холостого хода; 38 – штуцер системы вентиляции картера двигателя; 39 – штуцер отбора разрежения к вакуумному регулятору распределителя зажигания; 40 – штуцеры отбора разрежения системы рециркуляции отработавших газов; 41 – главный топливный жиклер первой камеры; 42 – эмульсионная трубка первой камеры; 43 – шариковый клапан ускорительного насоса; 44 – диафрагма ускорительного насоса; 45 – толкатель ускорительного насоса.
Основные отличия бензиновых двигателей от дизельных
Самое главное отличие двигателей, использующих различные виды топлива, состоит в том, что топливовоздушная смесь в бензиновом двигателе поджигается электрическим разрядом свечи, а в дизельном самовоспламеняется от сильно разогретого воздуха. Такты такие же, фазы смещены в соответствии с началом и концом впрыскивания топлива.
В современных дизельных двигателях топливо впрыскивается форсункой под большим давлением непосредственно в цилиндр. Основным условием нормальной работы является тщательное перемешивание топливовоздушной смеси.
Итак, несколько кардинальных отличий дизельного двигателя от бензинового:
- Зажигание топливовоздушной смеси происходит за счет сильного нагревания сжатого в цилиндре воздуха.
- Камера сгорания находится не в головке блока цилиндров, а в поршне (пример того, как выглядит такой поршень, приведен в разделе «Поршень», раздела 4.6 «Блок цилиндров и кривошипно-шатунный механизм»).
- В системе подачи топлива установлено два топливных насоса: подкачивающий и топливный насос высокого давления (ТНВД), который создает достаточное давление в системе, чтобы обеспечить нормальное распыление топлива. Топливный насос высокого давления схематически показан на рисунке 4.50.
- Если установлена система впрыска Common-Rail (устройство системы показано на рисунке 4.50), то топливо насосом высокого давления нагнетается в специальную топливную рампу (показана на рисунке 4.49 и представляет из себя трубку). В рампе давление с помощью регулятора поддерживается на одном уровне (порядка 2000 бар, а то и выше), а из рампы подводится через топливные патрубки высокого давления к топливным форсункам.
Рисунок 4.49 Внешний вид топливной рампы дизельного двигателя с системой Common-Rail.
- На современных дизельный двигателях в системе выпуска установлен сажевый фильтр.
Примечание
Именно сажа, содержащаяся в отработанных газах дизельных двигателей, является одним из самых опасных компонентов, и, по словам ученых, может приводить к образованию раковых опухолей.
- Не на всех дизельных двигателях устанавливается система подачи мочевины, которая способствует снижению выбросов вредных веществ (а именно: окислов азота) при работе двигателя.
Рисунок 4.50 Система непосредственного впрыска дизельного двигателя Common-Rail.
Топливо
На дизельных двигателях, как можно догадаться, применяется дизельное топливо (часто называемое «тяжелым топливом»). Качество дизельного топлива отражается цетановым числом.
Примечание
Цетановое число – характеристика воспламеняемости дизельного топлива, определяющая период задержки горения рабочей смеси (т. е. свежего заряда) (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.
Тяжелое топливо содержит парафины и серу. Чем больше их в составе дизеля, тем хуже, поскольку сера снижает способность к самовоспламенению, а парафины влияют на работу топлива в условиях низких температур окружающего воздуха. Если в дизеле будет высокое содержание парафинов и будут отсутствовать необходимые присадки, то после ночевки автомобиля на открытой стоянке при —15°С, хозяин его завести не сможет, так как само топливо в патрубках превратится в подобие желатина или солидола. Это, кстати, одна из причин установки на многие современные автомобили систем подогрева топливного фильтра и свечей накала предпускового подогрева.
Источник Источник Источник http://kerel.ru/engine/supply_system
Источник Источник http://autoleek.ru/sistemy-dvigatelja/toplivnaja-sistema/ustrojstvo-toplivnoj-sistemy.html
Источник Источник http://monolith.in.ua/structure-avto/toplivnaja-systema/