Система впрыска топлива: как и что происходит?

Система впрыска топлива: как и что происходит?

Система впрыска топлива — это система , которая подает топливную жидкость в определенном количестве в цилиндры самого двигателя . Такая система используется на моторах и бензиновых , и дизельных , однако технология процесса работы отличается в этих двух случаях : в дизельном двигателе топливная жидкость подается под высоким давлением : соединяясь с раскаленным воздухом она возгорается практически за мгновение . В бензиновом двигателе дело обстоит немного иначе : при подаче топлива появляется топливно — воздушная смесь , возгорающегося в дальнейшем от искры свечи зажигания .

Историческая справка

Сейчас в мире инжекторный ( впрысковый ) двигатель почти совсем вытеснил ставшую устаревшей карбюраторную систему . Но так было не всегда . Впервые систему впрыскивания топлива применяли еще в военной авиации середины прошлого века . Тогда она еще не получила достаточного распространения в автомобилестроении : лишь в 90х годах XX столетия , из — за ухудшившейся экологической ситуации в мире , стало понятно , что в выхлопах карбюратора остается слишком много не догоревшего топлива . Ситуация с экологией стала ухудшаться – объемы выбросов опасных веществ в атмосферу стало носить критический характер . Изменения в машиностроении стали необходимостью и конструкция топливных систем кардинально изменилась со временем . Первыми компаниями , выпустившими автомобили с инжекторной системой , были всем известные : Mercedes — Benz , Volkswagen , BMW , Mitsubishi . Новое решение казалось идеальным , если бы ни одно « но »: эволюционное решение имело один минус – высокие требования к качеству топливным смесям , а при использовании менее качественных смесей появилась опасность выделения оксида азота , что привело привело к значительному усложнению мотора . Система впрыска топлива: как и что происходит?

Какие системы бывают

Систему можно классифицировать по точке ее установки , а также по количеству топливных форсунок ( инжекторов ):

  1. Моновпрыск ( представляет собой одноточечный впрыск ).

Здесь единственная форсунка обслуживает сразу все камеры сгорания . Располагается , чаще всего , на местах самого карбюратора . Надежность в работе и проста : удобно расположена под потоками прохладного воздуха . Однако из — за возросших требований к экологичности ( требуется индивидуальная дозировка топливной смеси к каждому цилиндру ) становится все менее популярна .

  1. Многоточечный впрыск ( он распределяет определенными траекториями ).

Это дна один цилиндр приходится одна изолированная форсунка . Есть подвиды этой установке :

  • Одновременный — Когда все форсунки срабатывают одновременно .
  • Параллельно — попарный – парное открывание : перед моментом впуска , осуществляется открывание одной пары .

На сегодняшний день , применяется принцип фазированного впрыска , а параллельно — попарный чаще применяется при запуске в аварийном состоянии , когда некорректно работают датчики фаз .

  • Фазированный — все форсунки контролируются под индивидуальным управлением они открывается в начале самого впуска .
  • Непосредственный — впрыскивание топливной жидкости производится напрямую в цилиндр .

Достоинства

Инжекторы имеют достаточно много плюсов :

За счет дозированной подачи топлива уменьшается его расход . Даже в системах первых серий автомобилей , расход топлива в сравнении с карбюраторными уменьшается в среднем на 30 — 40 %. В современном мире разница увеличивается до двух раз у автомобилей схожей массы и рабочего объема .

  1. Повышение мощности двигателя .

Происходит особенно сильно на низких оборотах . Общее повышение составляет 7 — 10 % за счет более качественного наполнения цилиндров и более оптимального угла опережения зажигания .

  1. Экологичность .

Благодаря появлению датчиков по параметрам выхлопов , контролируется снижение токсичности .

  1. Упрощение и автоматизация запуска двигателя .
  2. Повышение динамических свойств автомобиля .

Возможности управления двигателем расширяются за счет моментальной реакции системы впрыскивания на каждую изменившуюся нагрузку .

  1. Независимость от погодных условий .

Как известно , карбюратор зависит от уровня атмосферного давления ( например , в горах ), что совершенно отсутствует у инжектора . В том числе под сильным наклоном влияния на работу инжектора не ощущается , что нельзя сказать о карбюраторе ( при повороте 15 градусов могут появиться перебои в работе ).

  1. Отсутствие необходимости в периодическом обслуживании .

Удобство инжекторной подаче топлива состоит в том , что имеются достаточно много возможностей для настройки параметров собственноручно , владельцем транспорта . По этой причине , единственное , что может потребоваться – это замена элементов , вышедших из строя .

  1. Повышенная защита от угона .

Блок электрических систем двигателем настроен так , что подача топливной смеси в мотор не будет осуществляться без полученного позволения от иммобилайзера .

  1. Нет сбора горючей смеси в выпускном тракте . Нет опасности попадания пламени во впускной тракт и последующего его возгорания при некорректной работе системы зажигания ( звук , похожий на хлопки , а в дальнейшем пожар или нарушение систем питания ). Благодаря тому , что в инжекторах горючее поступает лишь в момент открывания форсунки нужного цилиндра , топливо не может накопиться в каллекторе .
  2. Способность изменить высоту капота . В результате того , что система впрыска располагается не поверх двигателем , а по его бокам , появляется возможность понижения уровня капота , чего не скажешь о карбюраторной системе .

Недостатки

Конечно , и у инжекторной системы есть некоторые недостатки . Но с течением времени многие из них стали неактуальны , например высокая стоимость деталей , пониженная ремонтоспособность , необходимость в специализированном персонале при обслуживании . С развитием массового машиностроения , повышением надежности , а также возможность диагностики через мобильные устройства , эти проблемы уже в прошлом . Однако некоторые все же остались :

  1. К составу топлива все также остаются высокие требования .
  2. Зависимость от электропитания ( у вариантов автомобилей , контролируемых электроникой ).
  3. Повышенная вероятность пожара при ДТП . За счет подачи топлива под давлением . Для таких случаев работает контроллер , который отключает бензонасос в аварийных ситуациях .

Датчики топливной системы

При разной комплектации автомобиля может отличаться количество датчиков . Устанавливать их все , для нормальной работы , необязательна .

  1. Датчик кислорода . Он рассчитывает данные по содержанию кислорода в общем объеме отработанных газов .
  2. Датчик положения коленвала . Автомобиль не заведется при поломки данного датчика . Вы не сможете добраться до сервиса без помощи эвакуатора при неполадках с ДПКВ .
  3. Датчик массового расхода воздуха Поступающий объем воздуха и его расход двигателем рассчитывается именно этим датчиком .
  4. Датчик температуры охлаждающей жидкости . Для контроля температурного уровня охлаждающей жидкости , устанавливается данный датчик . Сигнал отправляется на блок управления , но на панели применяется другой датчик .
  5. Датчик скорости . Подает на приборную панель количество пробега .
  6. Датчик положения дроссельной заслонки Нагрузка , оказываемая на мотор , рассчитывается этим датчиком .
  7. Датчик детонации . При определении детонации в автомобиле , включается система ее гашения .
  8. Датчик фазы . Синхронизирует впрыск топлива . В аварийной ситуации , переводит двигатель на параллельно — попарную подачу горючего .

В итоге можно сказать , что система впрыска топлива сильно продвинулась за последние пятьдесят лет в своем технологическом совершенстве . Конечно , недостатки все еще остались , но однозначно , массовость в машиностроении , экология — все это непосредственно влияет на развитие двигателей автомобилей . Сейчас невероятно актуальна экологическая составляющая нашей планеты , поэтому разработчики автомобильных двигателей не имеют шансов остаться на том же уровне , что и сейчас , не вводя все новые и новые усовершенствованные методы переработки горючей смеси в двигателе .

Система впрыска топлива с механическим ТНВД

Системы впрыска бензиновых двигателей

В зависимости от способа образования топливно-воздушной смеси различают следующие системы впрыска бензиновых двигателей:

  • система центрального впрыска;
  • система распределенного впрыска;
  • система непосредственного впрыска.

Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе.

Центральный впрыск (моновпрыск

) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели.

Система распределенного впрыска (многоточечная система впрыска

) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.

Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).

Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.

Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно

). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.

В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.

Центральный впрыск топлива

Все больше и больше появляется на наших дорогах автомобилей, оснащенных микропроцессорными системами управления двигателей. Многие уже забывают слова «карбюратор» и «трамблер», потому что у них «инжектор».

Отечественная автомобильная промышленность семимильными шагами пытается догнать Запад. При этом развитие идет не по пути эволюции, а революционно. Многие этапы развития мы перескакиваем, не зная тех возможностей и плюсов, которые они дали в свое время на Западе, и чем Запад пожертвовал в угоду экологии. Мы от карбюратора и распределителя сразу перешли к фазированным микропроцессорным системам управления распределенным впрыском топлива и зажигания. При этом мы в российском автопроме наблюдаем нонсенс. Один и тот же завод выпускает автомобили, соответствующие экологическим требованиям ЕВРО-2, напичканные новейшими электронными системами. А с соседнего конвейера сходят автомобили, оснащенные карбюраторами и контактными распределителями образца середины 60-х годов. Логики в этом нет. Есть только экономическая целесообразность и дыры в законодательстве.

Разрушить эту практику попытался ВАЗ, начав выпуск «Нивы» с системой центрального впрыска топлива. К сожалению, на остальную «классику» эта тенденция не распространилась. Установка электронных систем значительно увеличивает себестоимость автомобилей. Увеличение цены снижает спрос на автомобили, приносящие существенную прибыль заводу. А низкая цена на «классику» основная причина ее популярности. Кто же станет душить курицу, несущую золотые яйца?

Но вернемся к истории появления систем впрыска топлива. Сначала, как альтернатива карбюратору, появился распределенный впрыск топлива непосредственно в цилиндры двигателя (оцените спираль истории), пришедший в автомобиль из авиации. Но это было дорого, недолговечно и ненадежно. Появившиеся в 70-х годах системы распределенного впрыска топлива с подачей топлива на впускной клапан были дешевле, но разница с ценой карбюратора была очень большой. Она остается такой и сегодня. Основным преимуществом системы распределенного впрыска топлива является более высокая мощность двигателя на высоких оборотах.

Для достижения этих показателей требуется оригинальная впускная система, а так же узлы и агрегаты системы распределенного впрыска топлива. Особенно заметно влияние стоимости системы впрыска на малолитражных автомобилях.

Тогда же возникла идея вместо нескольких форсунок использовать одну, установив ее вместо карбюратора. При этом конструкция стандартного карбюраторного двигателя оставалась практически без изменений. По этому пути развития пошли США, применяя систему центрального впрыска топлива (ЦВТ) на двигателях рабочего объема до 8 литров до середины 90-х годов. Применение системы центрального впрыска топлива позволило избавиться от многих болезней карбюратора в виде засорения жиклеров, сложности регулировки.

С переходом от аналоговых электронных систем к цифровым микропроцессорным, системы топливоподачи и зажигания были объединены в одном блоке управления.

Остановимся на принципах формирования топливоподачи и углов опережения зажигания в системах ЦВТ. Обороты двигателя считываются датчиком, установленным на коленчатом валу. Нагрузка на двигатель определяется по датчику абсолютного давления, установленному во впускной трубе после дроссельной заслонки. Сочетание этих двух параметров, обороты и нагрузка, дают блоку управления все поле рабочих нагрузок на двигатель, базовые поверхности топливоподачи и угла опережения зажигания. Подача топлива форсункой, вместо эжекции в диффузоре, обеспечивают устойчивую работу двигателя при малых скоростях потока воздуха, например при полном дросселе и малых оборотах двигателя или при пуске двигателя. Состав смеси регулируется специальным потенциометром или оценивается с помощью обратной связи по L-зонду. Обороты холостого хода поддерживаются с помощью регулятора холостого хода в соответствии с температурным режимом.

Применение датчика абсолютного давления вместо датчика разряжения позволяет блоку управления учитывать изменение внешних атмосферных условий. Изменение температурного состояния двигателя и окружающей среды отслеживается датчиками температуры охлаждающей жидкости и воздуха. Степень воздействия водителя на педаль дросселя (величину перемещения, скорость и ускорение) оценивается датчиком положения дросселя. Кроме того, датчик положения дросселя выполняет резервную функцию оценки нагрузки при отказе датчика абсолютного давления. Встроенная система диагностики своевременно сообщает водителю обо всех неисправностях.

В России с конца 80-х годов темой центрального впрыска топлива занимается Димитровградский автоагрегатный завод (ДААЗ).

За прошедшие годы они своими разработками значительно опередили Запад. Созданная ими система фазированного ЦВТ позволила избавиться от последней карбюраторной болезни — неравномерного распределения смеси по цилиндрам. Теперь к каждому цилиндру поступает именно такое количество топлива, какое требуется для работы на данном режиме. В результате расход топлива автомобиля с ЦВТ такой же, как на распределенном впрыске топлива.

Но вернемся к российским производителям автомобилей. Горьковский автозавод более половины выпускаемых автомобилей оснащает двигателем ЗМЗ-402. Этот двигатель не модернизировался с начала 80-х годов. Применение распределенного впрыска топлива на нем значительно удорожает двигатель, по цене сровняв его с ЗМЗ-4062. Возможность применения центрального впрыска топлива руководством ЗМЗ никогда серьезно не рассматривалась. Заволжский моторный завод на данном этапе заинтересован в прекращении выпуска ЗМЗ-402 и переналадке освободившихся производственных мощностей под выпуск ЗМЗ-4062.

Но 402-е семейство двигателей очень хорошо знакомо по эксплуатации, его ремонт возможен в любом гараже. Оно не прихотливо к качеству бензина и масла. Установка аппаратуры ЦВТ на ЗМЗ-402 позволяет автомобилю сравняться по экономичности с двигателем ЗМЗ-4062, на некоторых режимах и превзойти его. Так при проведении оценочных испытаний на автомобиле с двигателем ЗМЗ-4021 (бензин А-76) в условиях городского цикла расход топлива составил 10,1 л/100км. При установившемся режиме движения со скоростью 90 км/ч на 5-ой передаче расход топлива составил 7,8 л/100км. Разгон на 5-ой передаче возможен со скорости 25 км/ч (300 оборотов коленвала двигателя в минуту). Уверенный пуск двигателя — при «-26 град. С» на 6-ой секунде при 60 % зарядке батареи. Стартерные обороты двигателя при этом были 45 об/мин. Моторное масло полусинтетика 5W-40.

Распределитель зажигания удаляется с автомобиля. Вместо него устанавливается 4-х выводная катушка зажигания Bosch со статическим распределением высоковольтного напряжения. Высоковольтный разряд подводится к свечам по силиконовым высоковольтным проводам с силиконовыми наконечниками. Такая защита позволяет работать под водой, надежно изолируя свечу.

Применение системы центрального топлива и микропроцессорного зажигания избавит Вас от всех проблем и хлопот, связанных с частой регулировкой механических подвижных систем. Придаст Вашему автомобилю новые качества.

А. Адясов Фото NetRaider

Что собой представляет и как функционирует система непосредственного впрыска

Система центрального впрыска Mono Jetronic
Непосредственный впрыск считается одним из самых современных типов транспортировки топлива на бензиновых двигателях. Система непосредственной подачи считается инжекторной схемой для передачи горючего для бензиновых двигателей внутреннего сгорания с непосредственным впрыскиванием, у которого форсунки располагаются в головке блока цилиндров, а транспортировка при этом прямая. То есть бензин подается под неким давлением в камеру сгорания каждого цилиндра в противоположность стандартной схеме распределенного впрыскивания, где впрыскивание проходит во впускной коллектор.

Представленная идея разработчиков поспособствовала появлению прямой системы впрыскивания горючего, которая стала новым поколением. Как правило, прямой впрыск горючего применяется в самых современных двухконтактных и четырехконтактных двигателях внутреннего сгорания.

Непосредственный впрыск топлива имеет такое основное преимущество как уменьшение затрат топлива, при помощи функционирования мотора на достаточно бедных по составу горючих смесях. До сегодняшнего дня транспортировка горючего не была так распространена, и это обуславливалось такими причинами:

  • Большее количество времени уделялось на образование топлива;
  • Общепринятая на сегодня схема транспортировки в впускной трубопровод значительно упрощает устройство самой форсунки;
  • Значительно упрощается устройство головки блока.

Функционирование схемы как “непосредственный впрыск топлива” основывается на транспортировке топлива непосредственно в камеру сгорания двигателя. Прежде чем разбираться с принципом работы непосредственной системы подачи горючего необходимо разобраться с её элементами. Устройство прямой схемы подачи горючего включает насос высокого давления (ТНВД), топливную рампу, форсунки, регулятор давления горючего, предохраняющий клапан и датчик высокого давления.

Основной функцией ТНВД является подача горючего к рампе, а после к форсункам под высоки давлением, соответствуя потребностям двигателя. В основе конструкции ТНВД лежит несколько плунжеров. Сам насос высокого давления начинает функционировать при помощи распределительного валика впускных клапанов. Регулятор давления обеспечивает дозированную подачу топлива ТНВД, при соответствии с форсунками. Располагается регулятор в ТНВД. Основной функцией топлива является распределение смеси по форсункам и предотвращение пульсации жидкостей в контуре. Предохраняющий клапан выполняет защитную функцию элементов системы впрыскивания от предельных давлений, которые возникают во время температурного расширения смеси.

Система впрыска топлива: как и что происходит?

Благодаря сигналам, исходящим от датчика высокого давления блок руководства двигателем может регулировать давление рампы.

Основные режимы функционирования непосредственного впрыскивания топлива

Режим обеднённой транспортировки применяется в том случае, когда нагрузка на двигатель находится на минимальном уровне, во время движения на снижающей или постоянной скорости. Стандартное или стехиометрическое соотношение бензина и воздуха в камере сгорания, которое необходимо для нормального зажигания и сгорания бензина считается таким – 14/7/1. Хотя если обороты двигателя постепенно или быстро снижаются, то его можно абсолютно безвредно поменять для уменьшения количества горючего. То есть в данном режиме доли воздуха могут достигать 65 градусов.

Стандартный режим применяется во время равномерного движения автомобиля с постоянной нагрузкой на двигатель транспортного средства. В представленном режиме горючое смешивается с воздухом в идеальных пропорциях, а это будет способствовать полному его сгоранию. Во время функционирования на форсированном режиме содержания уровень топливной смеси немного превышается. Благодаря этому развивается максимальная мощность, а это довольно целесообразно, например, для перегруженного транспортного средства, который движется в гору.

Электронные системы впрыскивания топлива

Классификация систем впрыскивания топлива.

Применение систем впрыски­вания топлива взамен традиционных карбюраторов обеспечивает повышение топливной экономичности и снижение токсичности отработавших газов. Они по­зволяют в большей степени по сравнению с карбюраторами с электронным уп­равлением оптимизировать процесс смесеобразования. Однако следует отме­тить, что системы впрыскивания топлива сложнее систем топливоподачи с ис­пользованием карбюраторов из-за большего числа подвижных прецизионных механических элементов и электронных устройств и требуют более квалифици­рованного обслуживания в эксплуатации.

Классификация способов впрыскивания топлива показана на рис. 3.8.

Система впрыска топлива: как и что происходит?

Рис. 3.8. Классификация способов впрыскивания топлива

При распределенном впрыскивании топливо подается в зону впускных клапа­нов каждого цилиндра группами форсунок без согласования момента впрыски­вания с процессами впуска в каждый цилиндр (несогласованное впрыскивание) или каждой форсункой в определенный момент времени, согласованный с от­крытием соответствующих впускных клапанов цилиндров (согласованное впры­скивание). Системы распределенного впрыскивания топлива позволяют повы­сить приемистость автомобиля, надежность пуска, ускорить прогрев и увеличить мощность двигателя.

При распределенном впрыскивании топлива появляется возможность приме­нения газодинамического наддува, расширяются возможности в создании раз­личных конструкций впускного трубопровода. Однако у таких систем по сравнению с центральным впрыскиванием больше погрешность дозирования топлива из-за малых цикловых подач. Идентичность составов горючей смеси по цилин­драм в большей степени зависит от неравномерности дозирования топлива форсунками, чем от конструкции впускной системы.

При центральном впрыскивании топливо подается одной форсункой, устана­вливаемой на участке до разветвления впускного трубопровода. Существенных изменений в конструкции двигателя нет. Система центрального впрыскивания практически взаимозаменяема с карбюратором и может применяться на уже эксплуатируемых двигателях. При центральном впрыскивании по сравнению с карбюратором обеспечивается большая точность и стабильность дозирования топлива. Особенно эффективна в отношении повышения топливной экономич­ности система центрального впрыскивания топлива в сочетании с цифровой си­стемой зажигания. Конструкция данной системы существенно проще системы распределенного впрыскивания.

Системы впрыскивания топлива с электронным управлением.

Структурная схема системы впрыскивания топлива с программным управлением приведена на рис. 3.9.

Система впрыска топлива: как и что происходит?

Рис. 3.9. Структурная схема системы впрыскивания с программным управлением

На рис. 3.10 показана система распределенного впрыскивания то­плива «L-Jetronic». Электрический топливный насос 2 подает топливо из бака 1 через фильтр 3 в топливный коллектор 4, в котором с помощью стабилизато­ра 5 поддерживается постоянный перепад давления на входе и выходе топли­ва из форсунок 7. Стабилизатор перепада давления поддерживает постоянным давление впрыскивания и обеспечивает возврат избыточного топлива обратно в бак. Этим обеспечивается циркуляция топлива в системе и исключается об­разование паровых пробок. Из коллектора топливо поступает к рабочим фор­сункам, которые подают его в зону впускных клапанов. Количество впрыскиваемого топлива задается электронным блоком управления в зависимости от температуры, давления и объема поступающего воздуха, частоты вращения коленчатого вала и нагрузки двигателя. Учитывается также температура охла­ждающей жидкости.

Объем поступающего воздуха является основным параметром, определя­ющим дозирование топлива. Воздух поступает в цилиндры через измеритель 12 расхода воздуха и впускной трубопровод.Воздушный поток, поступающий в двигатель, отклоняет напорную измерительную заслонку измерителя рас­хода воздуха на определенный угол.

Система впрыска топлива: как и что происходит?

Рис. 3.10. Система впрыскивания топлива «L-Jetronic»:

1 — топливный бак; 2 — насос; 3 — фильтр; 4 — топливный коллектор; 5 — стабилизатор перепада давления; 6 — блок управления; 7 — форсунка с электромагнитным управлением; 8 — пусковая форсунка; 9 — винт регулирования частоты вращения вала на холостом ходу; 10 — датчик положе­ния дроссельной заслонки; 11 — дроссельная заслонка; 12 — измеритель расхода воздуха; 13 — реле; 14 — датчик кислорода; 15, 16, 17 — датчики; 18 — регулятор расхода воздуха на холо­стом ходу; 19 — винт измерителя расхода воздуха; 20 — аккумуляторная батарея; 21 — выключа­тель зажигания и системы впрыскивания.

При этом с помощью потенциометра в электрический сигнал, пропорциональный углу поворота заслонки, подается в блок управления, который определяет необходимое количество топлива и выдает на электромагнит­ные клапаны импульсы управления моментом впрыскивания топлива. Электронная схема управления дозированием топлива получает питание от аккумуляторной батареи 20 и начинает работать при включении зажигания.

Независимо от положения впускных клапанов, форсунки впрыскивают топ­ливо за один или два оборота колен­чатого вала двигателя. Если впускной клапан в момент впрыскивания топли­ва форсункой закрыт, топливо накапливается в пространстве перед клапаном и поступает в цилиндр при следующем его открытии одновременно с воздухом. Схема расположения форсунки при впрыскивании топлива в зону впускного клапана показана на рис. 3.11.

Рис. 3.11. Схема расположения форсунки при впрыскивании топлива в зону впускного кла­пана: 1 — электромагнитная форсунка; 2 — впускной трубопровод; 3 — впускной клапан

Количество поступающего к цилиндрам двигателя воздуха регулируется дроссельной заслонкой 11 (см. рис. 3.10), управляемой водителем. В системе предусмотрен регулятор 18 расхода воздуха на холостом ходу, расположенный около дроссельной заслонки. Он обеспечивает дополнительную подачу воздуха при холодном пуске и прогреве двигателя. По мере прогрева двигателя, начиная, с температуры охлаждающей жидкости 50-70°С, регулятор прекращает подачу дополнительного воздуха. После этого при закрытой дроссельной заслонке воз­дух поступает только через верхний байпасный (обводной) канал, сечение ко­торого можно изменять регулирующим винтом 9, что обеспечивает возможность регулирования частоты вращения в режиме холостого хода.

Стабилизатор 5 перепада давления поддерживает постоянное избыточное давление топлива относительно давления воздуха во впускном трубопроводе. В этом случае цикловая подача топлива форсункой 7 зависит только от времени, в течение которого открыт ее клапан. Следовательно, основной принцип элек­тронного управления впрыскиванием топлива заключается в широтной модуля­ции электрического импульса, управляющего форсункой при условии поддер­жания постоянного перепада давления топлива.

Длительность импульсов управления временем впрыскивания топлива фор­сункой корректируется в зависимости от температуры охлаждающей жидкости по информации от датчика 15.

На режимах полного открытия дроссельной заслонки и разгона автомобиля необходимо обогащение горючей смеси, что обеспечивается электронным блоком управления по информации от датчика 10 положения дроссельной заслон­ки. При открытии заслонки контактная система датчика 10 дает импульсы, ко­торые приводят к обогащению смеси в режиме разгона автомобиля.

Для облегчения пуска холодного двигателя в системе предусмотрена допол­нительная пусковая форсунка 8, продолжительность открытия которой зави­сит от температуры охлаждающей жидкости (датчик 16). Пусковая форсунка представляет собой электромагнитный клапан с вихревым центробежным распылителем.

Введенный в систему датчик кислорода обеспечивает поддержание стехиометрического состава смеси.

Применение системы впрыскивания топлива «L-Jetronic» значительно услож­няет схему электрооборудования автомобиля. Следует отметить, что электрические схемы системы «L-Jetronic» отличаются в зависи­мости от автомобиля, двигателя, установленного на нем, и года выпуска авто­мобиля.

Схема системы впрыскивания топлива двигателя автомобиля «Toyota» приве­дена на рис. 3.12

Система впрыска топлива: как и что происходит?

Рис. 3.12. Схема электронной системы управления двигателем («Toyota»):

1 — ключ зажигания; 2 — разъем для подключения внешних средств диагностики; 3 — сигнал включе­ния нейтральной передачи; 4 — сигнал включения кондиционера; 5 — сигнал скорости автомобиля; 6 — реле включения; 7 — распределитель зажигания; 8 — катушка зажигания; 9 — датчик аварийного падения давления масла; 10 — реле; 11 — электронный блок управления; 12 — шаговый двигатель си­стемы управления частотой вращения коленчатого вала на холостом ходу; 13 — датчик расхода воз­духа; 14 — датчик температуры поступающего в двигатель воздуха; 15 — регулятор давления; 16 — датчик угла открытия дроссельной заслонки; 17 — клапан холостого хода; 18 — форсунка холод­ного пуска; 19 — редукционный клапан; 20 — форсунка; 21 — таймер прогрева; 22 — датчик температу­ры охлаждающей жидкости; 23 — датчик детонации; 24 — топливный фильтр; 25 — топливный насос; 26 — бак для топлива; 27 — датчик кислорода

Ее центральной частью является электронный блок управле­ния 11, блок-схема которого приведена на рис. 3.13. На основании сигналов датчиков блок управления рассчитывает количество впрыскиваемого топлива для получения оптимального соотношения топлива и воздуха в горючей смеси. Количество впрыскиваемого топлива определяется временем открытия элект­ромагнитного клапана форсунки.

Основное время впрыскивания топлива — это время для получения смеси с тео­ретически необходимым коэффициентом избытка воздуха. Количество воздуха, поступающего в цилиндр за цикл, рассчитывается блоком управления по данным датчика расхода воздуха и частоты вращения коленчатого вала двигателя.

Система впрыска топлива: как и что происходит?

В системе предусмотрена коррекция времени срабатывания электромагнит­ной форсунки по напряжению питания (рис. 3.14, а), по температуре охлаждаю­щей жидкости во время прогрева двигателя (рис. 3.14, б), по температуре воз­духа на впуске (рис. 3.14, в).

Рис. 3.13. Блок-схема электронного блока управления

Система впрыска топлива: как и что происходит?

Рис. 3.14. Коррекция впрыскивания:

а — по напряжению питания; б — во время прогрева двигателя; в — по температуре воздуха на впуске

При работе двигателя необходимо достигнуть высокой степени очистки отработавших газов по компонентам СО, СН и NОХ с помощью трехкомпонентного нейтрализатора. Согласно приведенному на рис. 3.15 графику в этом случае состав горючей смеси по коэффициенту избытка воздуха l дол­жен быть близок к стехиометрическому. Стабилизация стехиометрического состава горючей смеси обеспечивается с помощью датчика кислорода, устанавливаемого в выпускном трубопроводе.

Система впрыска топлива: как и что происходит?

Рис. 3.15. Зависимость содержания вредных веществ в отработавших газах от состава рабочей смеси

Система выполняет также функции экономайзера принудительного холостого хода (ЭПХХ). Изменение частоты вращения, при которой прекращается и возоб­новляется подача топлива, в зависимости от температуры охлаждающей жид­кости, показано на рис. 3.16.

Система впрыска топлива: как и что происходит?

Рис. 3.16. Характеристики работы на прину­дительном холостом ходу:

1 — прекращение подачи топлива; 2 — начало подачи топлива

Количество топлива, впрыскиваемого при пуске двигателя, определяется температурой охлаждающей жидкости (рис. 3.17).

Рис. 3.17. Время впрыскивания топлива при пуске двигателя.

Устройство на дизеле

Система Старт-стоп что это и как работает

Однако некоторые дополнительные элементы здесь все же присутствуют. К примеру, на дизельных двигателях нашел широкое применение так называемый топливный насос высокого давления, или ТНВД. Он получает сигналы от блока управления и отправляет в форсунку мощную струю дизельного топлива, осуществляя тем самым питание мотора. Форсунка выполняется из усиленных сплавов, поскольку в конечном счете нагрузка на нее оказывается колоссальной.

Что это дает? Во-первых, особо прочный сплав системы питания позволяет детали выдерживать значительные перегрузки по температуре. Во-вторых, это гарантирует долговечность топливной системы, поскольку ее ремонт обычно обходится владельцам крайне недешево.

Система впрыска топлива: как и что происходит?

Второе, на что нужно обратить внимание, — здесь применяются так называемые свечи накала, за счет которых работает система впрыска. Принцип их работы заключается в том, чтобы не поджечь подготовленную смесь, а нагреть ее при повышенном давлении при поступлении сигнала от блока управления

Температура нагрева обычно составляет порядка 800 градусов, но в исключительных случаях достигает куда больших, четырехзначных, цифр.

Устройство и принцип работы механического ТНВД

В зависимости от конструкции ТНВД бывают следующих видов: рядный, распределительный и магистральный. В конструкции рядного ТНВД используются плунжерные пары, в соответствии с числом цилиндров в двигателе. Плунжерные пары располагаются в корпусе насоса, имеющем каналы для отвода и подвода топлива. Плунжер приводится в движение от кулачкового вала, а тот в свою очередь от коленвала. Плунжеры прижаты к кулачкам вала при помощи пружин.

Кулачок вращающегося вала воздействует на толкатель плунжера. Тот в свою очередь перемещается вверх по втулке, последовательно закрывая выпускное и впускное отверстия. При этом создается давление, необходимое для открытия нагнетательного клапана, после чего топливо поступает к определенной форсунке. Такой насос применялся, к примеру, на дизельном двигателе CD20 компании Nissan — настоящей «рабочей» лошадке конца восьмидесятых — начала девяностых. CD20 и его модификации можно увидеть под капотом большого количества машин — к примеру Nissan Sunny, Serena, Bluebird и так далее. Существовали и другие дизельные двигатели Nissan с механическим ТНВД. При этом, Nissan — далеко не единственный пример. Механические ТНВД можно встретить на старых моделях практически любого производителя.

Форсунка

Впрыск воды в ДВС

Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.

Система впрыска топлива: как и что происходит?

Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.

Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.

Система впрыска топлива: как и что происходит?

Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.

Устройство инжекторного двигателя основные датчики

Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:

  • Датчик массового расхода воздуха (ДМРВ). Сообщает блоку управления массу воздуха, поступающего в двигатель.
  • Датчик (-и) кислорода (лямбда-зонд). Контролирует содержание кислорода в выхлопных газах. С помощью полученной от него информации ЭБУ может выявить богатую или бедную топливную смесь и внести соответствующие коррективы.
  • Датчик положения дроссельной заслонки. Следит за положением дроссельной заслонки (она влияет на подачу воздуха в двигатель), благодаря чему блок управления может оперативно реагировать на изменения, увеличивая либо сокращая расход топлива по мере необходимости.
  • Датчик температуры охлаждающей жидкости. Помогает ЭБУ определить, когда двигатель достиг оптимальной рабочей температуры.
  • Датчик напряжения. Следит за напряжением бортовой сети автомобиля. В зависимости от показаний датчика блок управления может увеличить число оборотов холостого хода двигателя, если напряжение падает (такое бывает при высоких электрических нагрузках).
  • Коллекторный датчик абсолютного давления. Анализирует давление воздуха во впускном коллекторе. Количество воздуха, поступающего в двигатель, является хорошим показателем того, сколько энергии он вырабатывает. Чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе. Этот показатель используется для определения количества производимой энергии.
  • Датчик скорости вращения коленчатого вала. Скорость вращения коленвала – один из факторов, влияющих на расчет требуемой длительности импульса.

Существует два основных типа управления многоточечными системами впрыска: топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).

Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?

Как работает инжектор и система впрыска топлива?

Карбюратор был гениальным изобретением сам по себе. Двигатель автомобиля имеет 4 цикла, и один из них называется циклом всасывания. Если Вы читали нашу статью о том, как работает двигатель внутреннего сгорания, то Вы понимаете, о чём идёт речь. Проще говоря, двигатель засасывает (создавая существенный вакуум внутри цилиндра), и когда это происходит, карбюратор приходил на помощь, чтобы подать нужное количество бензина и воздуха в двигатель. Несмотря на всю легендарность системы, она не была лишена недостатков, ей не хватало точности количества подаваемого бензина, его необходимо было постоянно регулировать, чего не требуется современной системе впрыска топлива под давлением. Вы можете более подробно ознакомиться с принципом работы карбюратора.

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника — это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ — именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Система впрыска топлива: как и что происходит?

Так выглядит система впрыска топлива

Если сердце автомобиля — это его двигатель, то его мозг — это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном — проследим путь бензина от бензобака до двигателя — это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор. Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском. Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.

Система впрыска топлива: как и что происходит?

Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа «регулятором подачи воздуха» в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем — он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива — именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины — нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости — ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

Особенность системы, ее составные части

Если в целом посмотреть на устройство Common Rail, то можно обнаружить очень сильное сходство с инжекторными бензиновыми системами питания, особенно непосредственного впрыска. По сути, конструкторы просто позаимствовали все положительные качества, которыми обладает инжектор, и перенесли их на дизельную установку, но с учетом особенностей работы этого типа мотора.

Отличие дизельного двигателя от бензинового

Особенность этой системы, по отношению к классической механической, заключена в предварительном аккумулировании давления топлива перед подачей его в цилиндры. Отсюда и название – аккумуляторная топливная система.

Как и ранее на дизельных моторах, система питания делится на два контура – низкого и высокого давления. Дополнительно в конструкцию Common Rail добавили электронную часть, осуществляющей контроль и управление исполнительной частью.

Контур низкого давления

Эта составляющая конструктивно практически не изменилась. В его состав входят:

  • бак,
  • фильтрующие элементы (грубой и тонкой очистки);
  • насос подкачки топлива;
  • топливные трубопроводы.

Система впрыска топлива: как и что происходит?

Контур низкого давления

Дополнительно в этот контур включены еще некоторые детали – охладитель и подогреватель топлива, а также отсекатель. Об этих составных частях – ниже.

Контур высокого давления

А вот этот контур конструктивно значительно изменился, поскольку в него добавились новые составные элементы. Устройство этой части включает в себя:

  • ТНВД;
  • магистраль высокого давления;
  • центральный магистральный трубопровод (рампа);
  • форсунки;
  • датчик и клапан регулировки давления.

Система впрыска топлива: как и что происходит?

Контур высокого давления

Суть этой конструкции заключена в том, что насос высокого давления качает топливо не к каждой форсунке по отдельности, как это было в механической системе, а закачивает его в магистральный трубопровод (рампу). А уже из нее оно подается на форсунки.

Использование в конструкции рампы позволяет поддерживать давление дизтоплива перед подачей в требуемом значении, при этом обороты мотора не оказывают на него никакого влияния. Это свою очередь оказывает положительное влияние на процесс подачи топлива при разных режимах функционирования мотора.

Основными рабочими элементами в этом контуре, как и раннее, являются ТНВД и форсунки.

Насос имеет механический привод, а количество плунжерных пар, создающих давление, может варьироваться от 1 до 3. Примечательно, что в таком насосе, поскольку нет надобности качать для каждой форсунки, на некоторых режимах плунжерные пары могут отключаться.

А вот форсунки конструктивно изменились. В Common Rail применяются электрогидравлические форсунки, оснащенные электромагнитными или пьезоэлектрическими клапанами управления. Применение их позволило обеспечить многократный впрыск, повышающий эффективность работы силовой установки.

Электронная составляющая

Что касается электронной части, то она практически полностью идентична используемой на инжекторных моторах. То есть, состоит она из электронного блока управления и ряда датчиков:

  • давления в магистральном трубопроводе;
  • скорости вращения коленвала;
  • положения акселератора (педали газа);
  • расхода воздуха;
  • лямбда-зонда;
  • температуры дизтоплива и воздуха.

На некоторых моторах применяется еще ряд других датчиков. Назначение электронной части идентично бензиновому мотору. Датчики передают информацию о работе систем и механизмов силовой установки и ряд других параметров. Поступающие данные блок сравнивает с табличными, занесенными в память, и на основе этого подает импульс на срабатывание форсунок.

Виды систем впрыска на бензиновых ДВС

На бензиновых двигателях используются следующие системы подачи топлива – центральный впрыск (моно впрыск), распределенный впрыск (многоточечный), комбинированный впрыск и непосредственный впрыск.

Подача топлива в системе центрального впрыска происходит за счет топливной форсунки, которая расположена во впускном коллекторе. Поскольку форсунка всего одна, то эту систему впрыска называют еще – моновпрыск.

Системы этого вида на сегодняшний день утратили свою актуальность, поэтому в новых моделях автомобилей они не предусмотрены, впрочем, в некоторых старых моделях некоторых автомобильных марок их можно встретить.

К преимуществам моно впрыска можно отнести надежность и простоту использования. Недостатками подобной системы являются низкий уровень экологичности двигателя и высокий расход топлива.

Система многоточечного впрыска предусматривает подачу горючего отдельно на каждый цилиндр, оснащенный собственной топливной форсункой. При этом ТВС образуется только во впускном коллекторе.

В настоящее время большинство бензиновых двигателей оснащено системой распределенной подачи топлива. Преимуществами подобной системы являются высокая экологичность, оптимальный расход топлива, умеренные требования к качеству потребляемого топлива.

Одна из наиболее совершенных и прогрессивных систем впрыска. Принцип работы подобной системы заключается в прямой подаче (впрыске) топлива в камеру сгорания цилиндров.

Система непосредственной подачи топлива позволяет получать качественный состав ТВС на всех этапах работы ДВС с целью улучшения процесса сгорания горючей смеси, увеличения рабочей мощности двигателя, снижения уровня отработанных газов.

К недостаткам данной системы впрыска можно отнести сложную конструкцию и высокие требования к качеству топлива.

Система данного типа объединила в себе две системы – непосредственный и распределенный впрыск. Зачастую она применяется для уменьшения выбросов токсичных элементов и отработанных газов, благодаря чему достигается высокие показатели экологичности двигателя.

Все системы подачи топлива, пнименяемые на бензиновых ДВС могут быть оснащены механическими или электронными устройствами управления, из которых последняя наиболее совершенна, поскольку обеспечивает наилучшие показатели экономичности и экологичности двигателя.

Подача топлива в подобных системах может осуществляться непрерывно или дискретно (импульсно). По мнению специалистов, импульсная подача топлива является наиболее целесообразной и эффективной и на сегодняшний день применяется во всех современных двигателях.

Электронная система впрыска топлива

Возможно, мы бы с Вами и не обсуждали данную технологию, если бы пару десятилетий назад человечество всерьёз не озаботилось экологией, и одной из серьёзнейших проблем оказались токсичные выхлопные газы автомобилей.

Главной недоработкой машин с двигателями, оборудованными карбюраторами, стало неполное сгорание топлива, а чтобы решить эту проблему понадобились системы, способные регулировать количество подаваемого в цилиндры горючего в зависимости от режима работы мотора.

Система впрыска топлива: как и что происходит?

Так, на арене автомобилестроения появились системы впрыска или, как их ещё называют — инжекторные системы. Помимо повышения экологичности, эти технологии улучшили эффективность двигателей и их мощностные характеристики, став настоящей находкой для инженеров.

На сегодняшний день впрыск (инжекция) топлива используются не только на дизельных, но и на бензиновых агрегатах, что, несомненно, их объединяет.

Объединяет их и то, что главным рабочим элементом этих систем, какого бы типа они ни были, является форсунка. Но из-за различий метода сжигания горючего, конструкции инжекторных узлов у этих двух типов моторов, конечно же, отличаются. Поэтому рассмотрим их по очереди.

Устройство и принцип работы на примере электронной системы распределенного впрыска

Система впрыска топлива: как и что происходит?
Устройство системы впрыска
В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ – полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный “жизненно важный” в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Система впрыска топлива: как и что происходит?

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Система впрыска топлива: как и что происходит?

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Система впрыска топлива: как и что происходит?

Бензиновые ДВС

Впрыск топлива в двигателях, работающих на бензине, может быть реализован через карбюратор или инжектор. Последняя система является самой современной и позволяет производить впрыск под высоким давлением. Карбюратор присутствует по большей части в старых авто, выпущенных в прошлом столетии, тем не менее, карбюраторы еще не полностью вытеснены с рынка и встречаются на машинах разного возраста и состояния.

Система впрыска топлива: как и что происходит?

Карбюратор в двигателе, согласно схеме, имеет в себе систему жиклеров. Жиклеры в карбюраторе служат для того, чтобы бензин, находящийся под давлением, дозированно поступал в смесительную камеру и питал ее. Там находится прошедший фильтрацию воздух, и, смешиваясь в карбюраторе в нужной пропорции, смесь поступает в элементы двигателя и осуществляет его питание.

Преимуществом такого прибора, как карбюратор, является его примитивность как системы питания и доступность самостоятельного ремонта. Другим преимуществом является и то, что срок службы, который имеет такая система впрыска, как карбюратор, высок, и устройство обладает большим ресурсом и потенциалом.

К сожалению, не обошлось и без недостатков. Одним из ощутимых минусов является затрудненный запуск в зимнее время года и необходимость постоянной настройки, что создает владельцу дополнительные трудности.

Системы непосредственного впрыска двигателя, оборудованные схемой блока управления и автоматики контроля давления, в настоящий момент устанавливаются практически на все ныне выпускающиеся автомобили, за небольшим исключением. Особенностью их работы является то, что смешивание топлива и воздуха происходит не в специально предназначенном для этого устройстве, а непосредственно в распылителе, который производит впрыск под давлением по команде блока управления.

Здесь присутствует блок управления, который изменяет в автоматическом режиме количество воздуха, поступающее в систему, и его давление. В блоке управления присутствует специальная плата, которая обладает примитивным интеллектом и осуществляет достаточно эффективную и слаженную работу автоматики, контролирующей давление и температуру двигателя.

Блок управления питанием на старых автомобилях имеет несколько примитивный принцип работы. Тем не менее это не отменяет того факта, что является более удачной системой, чем его предшественники, в которых не было блока управления и системы автоматического контроля давления.

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная

Система впрыска топлива: как и что происходит?

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Непосредственная

Система впрыска топлива: как и что происходит?

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Источник Источник Источник http://elm327.club/remont-i-obsluzhivanie-avto/sistema-vpryska-topliva.html
Источник Источник http://honda-1.ru/obzory-rejtingi/elektronnaya-sistema-vpryska-topliva.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Нынешнее состояние актуальности ГБО

Нынешнее состояние актуальности ГБО

В последнее время из-за высокого и стремительного роста цен на топливо, которым пользуются автомобильные средства люди начали хвататься за голову и не знать, как дальше жить. Ведь, что бензин, что дизельное топливо стали многим не по карману. А бросать машину на месте и, чтобы она пылилась и не ездила тоже не особо правильный вариант. Но […]

Какой тип бензина и масла заливать в квадроцикл?

Какой тип бензина и масла заливать в квадроцикл?

Мой вопрос кажется немного глупым, но когда я впервые подъехал к заправке, я почувствовал себя полным идиотом, так как понятия не имел, какой бензин заливать в свой квадроцикл. Так что, если вы читаете эту статью и чувствуете себя полным новичком, не думайте, что вы полный новичок, мы все были на этом месте раньше. Я всегда […]

Яндекс.Метрика