Cистема питания двигателя внутреннего сгорания
Система питания карбюраторных двигателей
Функции, устройство и принцип функционирования
Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.
Система питания выполняет функции:
- подачи топлива, его очистки и хранения;
- очистки воздуха;
- приготовления специальной горючей смеси;
- подачи смеси в цилиндры ДВС.
Классическая система питания автомобиля состоит из следующих структурных элементов:
- топливного бака, предназначенного для хранения горючего;
- топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
- топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
- фильтра (или фильтров) очистки топлива;
- воздушного фильтра (для очистки воздуха от примесей);
- устройства приготовления топливно-воздушной смеси.
Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.
Варианты системы питания
Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности. Вид топлива является одним из критериев классификации систем питания ДВС.
В этой связи выделяют силовые агрегаты:
- бензиновые;
- дизельные;
- основанные на газообразном топливе.
Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).
Карбюратор
Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:
- поплавковую камеру и поплавок;
- распылитель, диффузор и смесительную камеру;
- воздушную и дроссельную заслонки;
- топливные и воздушные каналы с соответствующими жиклерами.
Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.
Таким образом, система питания карбюраторного двигателя представляет собой преимущественно механический способ приготовления топливно-воздушной смеси.
Впрыск топлива
Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).
Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления. Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.
Так, специалисты склонны выделять следующие варианты инжектора:
- с распределенным впрыском;
- с центральным впрыском.
Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.
Особенности дизельного двигателя
Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем. В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:
- с непосредственным впрыском;
- с вихрекамерным впрыском;
- с предкамерным впрыском.
Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.
Еще одна особенность, которой отличается система питания дизельного двигателя, заключается в принципе возгорания горючей смеси. Это происходит не от свечи зажигания (как у бензинового двигателя), а от давления, создаваемого поршнем цилиндра, то есть путем самовоспламенения. Иными словами, в этом случае нет необходимости применять свечи зажигания.
Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.
Виды систем питания двигателя
В зависимости от применяемой топливной жидкости двигатели, а, следовательно, и системы питания можно разделить на три основных вида:
- бензиновые;
- дизельные;
- работающие на газообразном топливе.
Существуют и другие виды, но их применение очень незначительно.
В некоторых случаях классификация систем питания производится не по типу топлива, а по способу приготовления и подачи горючей смеси в камеру сгорания. В этом случае различают такие типы:
- карбюраторный (эжекторный);
- с принудительным впрыском (инжекторный).
Режимы работы системы питания
В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.
- Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
- Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
- Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
- Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
- Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).
Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме. » alt=»»>
Карбюраторные системы питания
Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.
Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.
Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).
Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.
Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.
В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.
Рис. Схема системы питания топливом карбюраторного двигателя: 1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор
В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.
Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.
Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.
Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.
Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.
Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.
Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.
Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.
Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.
Неисправности и сервисное обслуживание
В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.
Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя
Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.
Потеря мощности ДВС
Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.
Утечка горючего
Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.
Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.
Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.
Система питания карбюраторного
Двигателя
Система питания карбюраторного двигателя предназначена для приготовления в определенной пропорции из топлива и воздуха горючей смеси, подачи ее в цилиндры двигателя и отвода из них отработавших газов.
Общее устройство и работа системы питания
Всистему питания двигателя автомобиля ЗИЛ-130 (рис. 64) входят топливный бак 10,
топливопроводы 7 от бака к фильтру-отстойнику
14
и к топливному насосу
19,
карбюратор
3,
воздушный фильтр
2,
приемные трубы
16,
глушитель
15,
выпускная труба
13
глушителя. В систему питания входят такжефильтр
18
тонкой очистки топлива, установленный между топливным насосом и карбюратором, впускной трубопровод, на котором укреплен карбюратор, и выпускной трубопровод.
Рис. 63. Схемы вентиляции картера двигателей автомобилей: а — ЗИЛ-130; 6 — ГАЗ-24 «Волга»; 1 — воздушный фильтр вентиляции картера; 2 — воздухоподводящий канал; 3 — клапан вентиляции; 4 — стакан пружины; 5 — пружина; б — шарик клапана; 7 —штуцер; 8 и 13 — маслоуловители; 9 — трубка вентиляции картера; 10 — впускной клапан; 11 — воздушный фильтр; 12 — шланг большого диаметра; 14 — шланг малого диаметра; 15— сетчатый фильтрующий элемент; 16 — впускной трубопровод; 17 — карбюратор; 18 — щелевое отверстие |
Схема систем питания и выпуска отработавших газов двигателя автомобиля ЗИЛ-130: 1
— канал подвода воздуха к воздушному фильтру;
2
— воздушный фильтр;
3
— карбюратор;
4 —
рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельными заслонками;
6
— педаль управления дроссельными заслонками; 7 — топливопроводы;
— указатель уровня топлива; 9 — датчик указателя уровня топлива;
10
— топливный бак;
— крышка горловины топливного бака,
кран;
13
— выпускная труба глушителя;
14
—
фильтр-отстойник;
15
— глушитель;
16 —
приемные трубы;
17 —
выпускной трубопровод;
— фильтр тонкой очистки топлива;
Во время работы двигателя топливо из бака после предварительной очистки в фильтре-отстойнике насосом 19
подается к карбюратору. При такте впуска в цилиндре двигателя создается разрежение, передающееся в карбюратор
ив установленный на нем воздушный фильтр. Очищенный воздух проходит в смесительную. камеру, где из жиклеров подается топливо. Испаряющееся топливо перемешивается с воздухом, образуя горючую смесь. Из карбюратора по впускному трубопроводу горючая смесь поступает в цилиндры двигателя. Газы, образовавшиеся после быстрого сгорания рабочей смеси в цилиндре, расширяются, давят на поршень, и он опускается вниз, совершая рабочий ход. После рабочего хода отработавшие газы через открытый выпускной клапан вытесняются поршнем в выпускной трубопровод 17.
Затем они поступают в приемные трубы
16
глушителя, выпускную трубу
13
и в атмосферу. Топливо наливают в бак через горловину, закрываемую крышкой
11.
Количество топлива, находящегося в баке, контролируют при помощи датчика
9
и указателя
8
уровня топлива.
Автомобильные бензины
Автомобильные двигатели (за исключением газовых и дизельных) работают на бензине. По ГОСТ 2084-77* выпускаются бензины следующих марок: А-72, А-76, АИ-93, АИ-98. Буква А означает, что бензин автомобильный; цифра — наименьшее октановое число, определенное по моторному методу; буква И указывает на то, что октановое число определено по исследовательскому методу. Автомобильные бензины, за исключением бензина АИ-98, подразделяют на летние и зимние. Зимние бензины содержат увеличенное количество легкоиспаряющихся фракций, что улучшает условия пуска двигателя. В северных и северо-восточных районах СССР зимние бензины применяют в течение всего года. В остальных районах страны эти бензины применяют с 1 октября до 1 апреля.
В автомобильные бензины А-76, АИ-93 и АИ-98 для повышения антидетонационной стойкости добавляют антидетонатор — тетраэтилсвинец (ТЭС). Для отличия обыкновенных бензинов от этилированных последние окрашивают в желтый (А-76), оранжево-красный (АИ-93) и синий (АИ-98) цвета. Таким образом, выпускают бензины марки А-72 и марок: А-76, АИ-93 и АИ-98 (этилированные и неэтилированные). Этилированные бензины очень ядовиты и, попав в жидком виде и в виде паров на кожу или в дыхательные пути человека могут вызвать тяжелые заболевания. Поэтому применять этилированные бензины для мытья деталей и рук категорически запрещено. При попадании этилированного бензина на кожу его необходимо немедленно стереть ветошью, смоченной в керосине.
В зависимости от состава горючей смеси нормальная скорость распространения фронта пламени но камере сгорания различна, но не превышает 35 м/с. При детонации (взрывное горение) скорость распространения сгорания смеси доходит до 2000 м/с. При детонационном сгорании возникает сильная волна давления, вызывающая вибрацию деталей. Работа двигателя с детонацией недопустима, так как сопровождается ударной нагрузкой на поршни, поршневые пальцы, шатунные и коренные подшипники, местным перегревом деталей, прогоранием поршней и клапанов,
дымным выпуском, снижением мощности двигателя и увеличением расхода топлива. Возникновение детонационного сгорания происходит в основном при неправильном подборе сорта топлива для двигателя с данной степенью сжатия. На появление детонации влияют также конструкция камеры сгорания, размеры цилиндра, материал головки цилиндра, скоростной режим и нагрузка двигателя, нагарообразование на поршне и головке цилиндров, угол опережения зажигания и т. д.
От антидетонационных свойств бензина (его способности противостоять детонации) зависит возможность применения этого бензина в двигателях, имеющих повышенную степень сжатия. Антидетонационные свойства бензина оценивают октановым числом. Бензин сравнивают со смесью из двух топлив: изооктана и гептана. Изооктан слабо детонирует, и для него октановое число условно принимают равным 100, а гептан сильно детонирует, и для него октановое число условно принимают равным нулю. Если смесь, состоящая, например, из 72 %
изооктана и 28 % гептана (по объему), по детонационным свойствам соответствует проверяемому бензину, то октановое число такого бензина равно 72 и т. д. Чем выше октановое число бензина, тем с большей степенью сжатия может работать двигатель без детонации на этом топливе.
Работая с бензином, необходимо строго соблюдать правила техники безопасности, так как бензин является легковоспламеняющейся жидкостью. Тара из-под бензина очень опасна, так как содержит пары, которые легко взрываются. Бензин, попавший на окрашенные детали и резину, портит их, растворяя краску, лак и резину.
Гарантийный срок хранения автомобильного бензина всех марок (по ГОСТ 2084 — 77*) устанавливается 5 лет со дня его изготовления. По истечении гарантийного срока хранения автомобильный бензин перед применением должен быть проверен на соответствие требованиям стандарта.
Двигатели автомобилей ГАЗ-24-01 «Волга», ГАЗ-53А, ГАЗ-53-12 и ЗИЛ-130 работают на бензине А-76, а автомобилей ГАЗ-24 «Волга», ГАЗ-3102 «Волга», «Москвич-2140» и «Жигули» — на бензине АИ-93.
Горючая смесь
Для приготовления горючей смеси используют топливо и воздух, причем оба компонента, входящие в состав смеси, должны быть тщательно очищены от механических и других примесей. Горючая смесь — это смесь, приготовленная в карбюраторе из паров мелкораспыленного топлива и воздуха. Горючая смесь, поступающая в цилиндры двигателя, смешивается с отработавшими газами и образует рабочую смесь.
Состав горючей смеси характеризуется определенным соотношением масс топлива и воздуха. Для полного сгорания 1 кг бензина теоретически необходимо 14,9 кг воздуха (обычно принимают 15 кг). Однако количество воздуха, действительно расходуемого на приготовление горючей смеси, может быть больше или меньше теоретически необходимого. Поэтому состав горючей смеси принято характеризовать коэффициентом избытка воздуха, обозначаемым буквой а. Коэффициент а представляет собой отношение действительного количества воздуха Ьд,
участвующего в процессе сгорания бензина, к теоретически необходимому количеству воздуха
Ь0,
т. е. а = /,дД,0.
Если в сгорании 1 кг бензина действительно участвует 15 кг воздуха, т. е. столько, сколько теоретически необходимо, то а= 15/15=1, и такую смесь называют нормальной. Горючую смесь, для которой а 1 называют бедной, так как в ней содержится воздуха больше теоретически необходимого количества. Для более точного определения степени обогащения или обеднения горючей смеси различают следующие смеси: богатая (а = 0,70 ч-4-0,85); обогащенная (а = 0,85 ч- 0,95); обедненная (а= 1,05 ч-1,15); бедная (а = = 1,15 4-1,20).
При слишком большом обогащении или обеднении горючая смесь теряет способность воспламеняться. В первом случае это происходит из-за недостатка кислорода воздуха, а во втором вследствие значительного избытка воздуха и небольшого количества бензина. Существуют определенные пределы воспламеняемости горючей смеси: для богатой а= 0,5; для бедной а=1,35. Двигатель не должен работать на переобогащенных или переобедненных горючих смесях, так как в обоих случаях уменьшается его мощность и снижается экономичность.
Простейший карбюратор
Процесс приготовления горючей смеси определенного состава из мелкораспыленного топлива и воздуха, происходящий вне цилиндров двигателя, называют карбюрацией, а прибор, в котором происходит этот процесс, — карбюратором.
Принцип работы простейшего карбюратора аналогичен принципу работы пульверизатора и состоит в том, что жидкость под действием разрежения вытекает из распылителя (трубки) и, смешиваясь с воздухом, образует горючую смесь. Простейший карбюратор (рис. 65, а)
состоит из поплавковой камеры
8,
диффузора
3,
распылителя
4
с жиклером 7, смесительной камеры
6
и дроссельной заслонки 5. В поплавковой камере находится пустотелый поплавок 9, шарнирно соединенный с осью и действующий на игольчатый клапан
10.
Топливо подается в поплавковую камеру насосом по трубопроводу /. Отверстие
2
соединяет поплавковую камеру с окружающим воздухом, поэтому в камере постоянно поддерживается атмосферное давление. Поплавковая камера карбюратора соединена со смесительной камерой
6
распылителем
4,
в котором установлен жиклер 7.
Жиклер представляет собой металлическую пробку с небольшим калиброванным отверстием, через которое в единицу времени проходит определенная порция топлива. Выходной конец распылителя устанавливают в самом узком месте диффузора — в горловине.
Простейший карбюратор работает следующим образом. При наполнении топливом поплавковой камеры 8
поплавок 9 постепенно всплывает. При определенном уровне топлива игольчатый клапан
10
перекрывает отверстие в подводящем трубопроводе, и поступление топлива в поплавковую камеру прекращается. При такте впуска поршень в двигателе перемещается в НМТ, и в цилиндре создается разрежение, передающееся в смесительную камеру карбюратора. Разрежение в этой камере зависит от положения дроссельной заслонки: с прикрытием заслонки разрежение уменьшается, а с открытием — увеличивается. Пока двигатель не работает, в поплавковой камере и в распылителе топливо находится на одном уровне, причем верхний конец распылителя располагается несколько выше уровня топлива (на 2 — 3 мм).
Во время работы двигателя поступающий в карбюратор воздух проходит через узкое сечение диффузора, в результате чего скорость воздуха в нем, а следовательно, и разрежение возрастают. Создается перепад давлений между поплавковой камерой и диффузором, благодаря чему топливо начинает фонтанировать из распылителя. Топливо распыливается, перемешивается с воздухом, частично испаряется и в виде горючей смеси поступает в цилиндры двигателя. С изменением положения дроссельной заслонки значительно изменяется состав горючей смеси, приготовляемой простейшим карбюратором.
На рис. 65,6 представлены характеристики простейшего / и идеального // карбюраторов. Они показывают изменение состава горючей смеси карбюратора в зависимости от нагрузки (от положения дроссельной заслонки — в %
открытия). По мере открытия дроссельной заслонки в простейшем карбюраторе горючая смесь все больше обогащается, причем только в двух случаях (точки
А
и
Б)
состав смеси совпадает с составом горючей смеси, приготовляемой идеальным карбюратором (при полностью открытой дроссельной заслонке и при некотором промежуточном ее положении). Таким образом, основным недостатком простейшего карбюратора является невозможность приготовления горючей смеси нужного состава.
Режимы работы двигателя
Основными режимами работы автомобильного двигателя являются пуск двигателя, холостой ход и малые нагрузки, средние нагрузки, полные на-
Схема впускной системы карбюраторного двигателя и характеристики карбюраторов:
схема впускной системы с простейшим карбюратором;
6
— характеристики карбюраторов; / — трубопровод;
2 —
отверстие в поплавковой камере;
3 —
диффузор;
4 —
распылитель;
5
-дроссельная заслонка;
б —
смесительная камера; 7 —жиклер;
8 —
поплавковая камера;
поплавок;
10 —
игольчатый клапан; /—простейший карбюратор;
II
— идеальный карбюратор
грузки и резкие переходы с малых нагрузок на большие. При пуске двигателя необходима очень богатая смесь (а=0,2 4-0,6), так как частота вращения коленчатого вала мала, топливо плохо испаряется и часть его конденсируется на холодных стенках цилиндра.
Работа двигателя на режимах холостого хода и малой нагрузки возможна при а=0,7ч-0,8. Горючая смесь, поступающая в цилиндры двигателя, загрязняется остаточными газами, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя.
Автомобильный двигатель большую часть времени работает на режиме средних нагрузок, т. е. с не полностью открытой дроссельной заслонкой. Для этого режима необходима обедненная смесь с коэффициентом избытка воздуха а = 1,05 ч-1,15 (экономичная смесь), обеспечивающая экономичную работу двигателя.
При резком открытии дроссельной заслонки возможно обеднение горючей смеси, так как увеличивается количество поступающего воздуха. Карбюратор должен иметь устройство, предотвращающее это обеднение. С полной нагрузкой двигатель работает при разгоне автомобиля, движении с максимальной скоростью и преодолении крутых подъемов или тяжелых участков дороги. В этом случае для получения наибольшей мощности двигателя карбюратор должен приготовлять обогащенную смесь с коэффициентом а = 0,85-=-0,95.
§ 37. Главная дозирующая система и вспомогательные устройства карбюраторов
Современные карбюраторы, применяемые на автомобильных двигателях, имеют главную дозирующую систему и вспомогательные устройства, обеспечивающие приготовление необходимой по составу горючей смеси в зависимости от режима работы двигателя, а также ограничители максимальной частоты вращения коленчатого вала. В настоящее время к карбюраторам предъявляют еще одно требование — обеспечение минимальной токсичности отработавших газов, выбрасываемых в атмосферу при работе двигателя.
Главная дозирующая система.Работу двигателя на всех режимах, кроме его работы с малой частотой вращения на режиме холостого хода, обеспечивает главная дозирующая система. Для образования горючей смеси эта система подает наибольшую порцию топлива. При рассмотрении работы простейшего карбюратора было установлено, что с увеличением открытия дроссельной заслонки количество вытекающего из распылителя топлива возрастает быстрее, чем количество воздуха, проходящего через диффузор, т. е. горючая смесь обогащается тем больше, чем больше открывается дроссельная заслонка. Предотвращение обогащения горючей смеси с увеличением открытия дроссельной заслонки называют компенсацией ее состава. В карбюраторах применяют следующие способы компенсации смеси: регулирование разрежения в диффузоре; установка двух жиклеров — главного и компенсационного; пневматическое торможение истечения топлива (эмульгирование топлива в главной дозирующей системе). Последний способ компенсации смеси получил наибольшее распространение в карбюраторах. При любом способе компенсации главная дозирующая система обеспечивает приготовление карбюратором при работе двигателя на средних нагрузках обедненной, т. е. экономичной горючей смеси.
Компенсация горючей смеси пневматическим торможением истечения топлива.Топливо из поплавковой камеры 6
(рис. 66, а) поступает через главный жиклер 7 в колодец
4
и далее через эмульсионную трубку 5 с отверстиями в распылитель
1.
Трубка 5 сообщается с воздухом через жиклер
3.
При создании разрежения в диффузоре
9
из распылителя начинает фонтанировать топливо, уровень его в колодце понижается, и открывается верхнее отверстие в эмульсионной трубке. Воздух, выходящий из трубки 5, смешивается с топливом, и эмульсия подается через распылитель
1
в смесительную камеру карбюратора.
При увеличении открытия дроссельной заслонки возрастает расход топлива из колодца, и в трубке 5 открывается больше воздушных отверстий. Воздух, поступающий в распылитель, уменьшает разрежение у главного жиклера и замедляет (тормозит) истечение из него топлива, что и необходимо для обеднения горючей смеси. Создание экономичной смеси в этом случае возможно лишь при правильном подборе диаметров воздушного 3
и главного 7 (топливного) жиклеров. Такой способ компенсации горючей смеси использован в карбюраторах К-126Б, К-126Г, К-88АМ и др.
Пусковое устройство.Пуск двигателя, особенно в холодную погоду, затруднен, так как топливо плохо испаряется. Чтобы к моменту воспламенения рабочей смеси в цилиндре находилось достаточное количество паров топлива, смесь необходимо сильно обогатить. Такое обогащение смеси обеспечивают с помощью воздушной заслонки 2
(рис. 66,
б),
установленной в воздушном патрубке карбюратора. Воздушной заслонкой управляет водитель из кабины при помощи тяги и кнопки.
При пуске двигателя заслонку прикрывают. В этом случае при вращении коленчатого вала в смесительной камере 12
создается значительное разрежение, и топливо поступает из распылителя / карбюратора. При пуске холодного двигателя, когда масло густое, нельзя допускать большую частоту вращения коленчатого вала. Поэтому дроссельную заслонку
8
прикрывают. После пуска двигателя его прогревают при малой частоте вращения и воздушную заслонку постепенно открывают, иначе в двигатель будет поступать очень богатая смесь.
На воздушной заслонке установлен клапан 10,
удерживаемый в закрытом положении слабой пружиной
11.
При первых вспышках в цилиндрах двигателя, чтобы не было сильного обогащения смеси, клапан под действием давления воздуха открывается. Таким образом, при пуске двигателя через клапан
10
проходит необходимое количество воздуха.
Система холостогохода. Во время работы
Схемы систем и элементов карбюратора:
— схема системы компенсации смеси
пневматическим торможением истечения топлива; б —
схема действия воздушной заслонки;
в
— схема системы холостого хода; / — распылитель;
2 —
воздушная заслонка;
3
— воздушный жиклер;
4
— топливный колодец; 5 — трубка;
6
— поплавковая камера; 7 — главный жиклер;
8
— дроссельная заслонка; 9 —диффузор;
10
— клапан;
11
— пружина;
12
— смесительная камера;
13 —
отверстие в поплавковой камере; 14— топливный жиклер системы холостого хода; 15— канал системы холостого хода;
16
и
18 —
отверстия системы холостого хода;
17
— регулировочный винт двигателя на режиме холостого
хода (рис. 66, в) топливо поступает через жиклер 14
системы холостого хода, установленный в колодце
4.
Если дроссельная заслонка
8
прикрыта, то за ней создается сильное разрежение, и воздух с большой скоростью проходит через узкие щели между заслонкой и стенками патрубка. На выходе из канала
15
системы холостого хода имеются отверстие
18
(ниже дроссельной заслонки) и отверстие
16
(выше этой заслонки). Около отверстия
18
образуется разрежение, передающееся в канал 75 и в колодец
4.
К топливу, поступающему в канал 75 из колодца
4,
примешивается воздух, проходящий через жиклер
3.
Образовавшаяся эмульсия (смесь топлива с мелкими пузырьками воздуха) из канала 75 через отверстие
18
выходит в пространство за дроссельной заслонкой, распыливается и, перемешиваясь с воздухом, образует горючую смесь. Через отверстие
16
в канал 75 и в пространство за дроссельной заслонкой дополнительно поступает воздух, что улучшает смесеобразование.
В случае дальнейшего открытия дроссельной заслонки при переходе на режим малых нагрузок отверстия 16
и
18
оказываются под заслонкой, и эмульсия поступает из обоих отверстий. Так осуществляется плавный переход с режима холостого хода двигателя на режимы малых и средних нагрузок. Состав смеси можно изменять регулировочным винтом 17.
При отвертывании винта возрастает разрежение в канале 75 и увеличивается расход эмульсии из отверстия
18
— смесь обогащается. При завертывании винта
17
смесь обедняется.
Экономайзер.Для получения от двигателя полной мощности необходима обогащенная смесь. Это достигается использованием специального устройства, называемого экономайзером. По способу управления экономайзеры бывают с механическим или пневматическим приводом. Экономайзер может подавать топливо в смесительную камеру карбюратора непосредственно или через главную дозирующую систему. Он включается в работу, как правило, при почти полностью открытой дроссельной заслонке.
Экономайзер с механическим приводом (рис. 67, а) работает следующим образом. Пока дроссельная заслонка 8
прикрыта и двигатель работает на режиме средних нагрузок, клапан
4
экономайзера
Схемы вспомогательных (дополнительных) устройств карбюратора:
— экономайзера с механическим приводом;
б
— ускорительного насоса; / — жиклер полной мощности;
2 —
тяга;
3
— пружина;
4 —
клапан
экономайзера; 5 — шток; б —
главный жиклер; 7 — смесительная камера;
8 —
дроссельная заслонка;
9 —
жиклер ускорительного насоса;
10 —
рычаг;
Л
— обратный клапан;
12 —
поршень;
13 —
поводок;
14
— клапан ускорительного насоса
пружиной 3
прижат к седлу и топливо поступает в смесительную камеру 7 только через главный жиклер
б.
При переводе двигателя на режим полных нагрузок, что соответствует открытию дроссельной заслонки на 80 — 85% и более, тяга 2, шарнирно соединенная с заслонкой, опускается вниз и через шток 5 открывает клапан
4
экономайзера. В смесительную камеру через жиклер
1
полной мощности начинает подаваться помимо главного жиклера дополнительное количество топлива, и горючая смесь обогащается.
Ускорительный насос.Для предотвращения обеднения горючей смеси при резких переходах с режима малых нагрузок на режим максимальных нагрузок карбюраторы оборудованы ускорительными насосами, которые могут быть установлены отдельно или объединены с экономайзерами.
В колодце ускорительного насоса установлен поршень 12
(рис. 67,
б)
со штоком, шарнирно соединенным с поводком
13
тяги
2.
Дроссельная заслонка
8
рычагом
10
связана через промежуточное звено с тягой
2.
При
закрытии заслонки тяга, поводок и поршень перемещаются вверх, и в колодец ускорительного насоса через обратный клапан 11
из поплавковой камеры поступает топливо. Ускорительный насос приводится в действие рычагом
10,
укрепленным на оси дроссельной заслонки. При резком открытии заслонки тяга
2
быстро опускается вниз и сжимает пружину
3
поводком
13.
Опускающийся поршень давит на топливо, обратный клапан
11
закрывается, а клапан
14
ускорительного насоса открывается; топливо впрыскивается через жиклер
9
в смесительную камеру 7 карбюратора. Пружина
3,
установленная на штоке поршня, обеспечивает затяжное, а не кратковременное действие ускорительного насоса и предохраняет его привод от механических повреждений.
При плавном открытии дроссельной заслонки топливо перетекает через зазор между стенками колодца и поршня, поэтому впрыскивания топлива из колодца в смесительную камеру не происходит. Перетеканию топлива из колодца ускорительного насоса в поплавковую камеру препятствует обратный клапан 11.
Если ускорительный насос не работает, то пружина плотно прижимает клапан
14
к седлу и топливо не поступает в смесительную камеру.
§ 38. Устройство и работа карбюраторов
Типы карбюраторов. Взависимости от направления движения воздушного потока и горючей смеси различают карбюраторы с падающим, восходящим или горизонтальным потоками. В большинстве случаев на автомобильных двигателях применяют карбюраторы с падающим потоком, обеспечивающие лучшее наполнение цилиндров горючей смесью и несколько большую мощность двигателя. Улучшение наполнения цилиндров и повышение мощности происходит вследствие более совершенной в этом случае конструкции впускного трубопровода и меньшего сопротивления его движению горючей смеси. Кроме того, воздушный патрубок карбюратора расположен так, что на нем удобно устанавливать воздушный фильтр, легче проводить техническое обслуживание. Проще в этом случае и привод управления карбюратором.
Поплавковые камеры.Если поплавковая камера сообщается с окружающим воздухом, то при изменении сопротивления воздушного фильтра (например, при загрязнении) возрастает разрежение в диффузоре, и горючая смесь значительно обогащается. Такую поплавковую камеру называют несбалансированной. Поплавковые камеры, соединенные каналом с воздушным патрубком, называют сбалансированными (уравновешенными), и их делают герметичными. К ним поступает очищенный воздух, вследствие чего устраняется влияние воздушного фильтра на состав горючей смеси. При нарушении герметичности поплавковой камеры горючая смесь обогащается, что приводит к увеличению расхода топлива и повышению токсичности отработавших газов. Если поплавковая камера несбалансированная, то необходимо внимательно следить за состоянием воздушного фильтра.
Карбюратор К-126Г.Устанавливаемый на автомобиле ГАЗ-24 «Волга» карбюратор К-126Г (рис. 68, а) —двухкамерный с падающим потоком, сбалансированной поплавковой камерой. Дроссельные заслонки открываются последовательно. При нажатии на педаль управления дроссельными заслонками сначала открывается дроссельная заслонка основной смесительной камеры. И только после того как она откроется не менее чем на 2/3 своего хода, начинает открываться вместе с ней дроссельная заслонка дополнительной камеры.
— общий вид;
б
— схема привода дроссельной заслонки дополнительной смесительной камеры; / и
8
— отверстия; 2 — корпус;
3
— воздушная заслонка;
4
— ось воздушной заслонки: 5 — жиклер системы холостого хода;
6 —
пробка фильтра; 7 — рычаг привода воздушной заслонки; 9 — регулировочный винт;
10
— тяга; // — корпус смесительных камер;
12
— рычаг малой частоты вращения;
13
— рычаг привода дроссельной заслонки основной смесительной камеры;
14
— регулировочный винт частоты вращения холостого хода;
15 —
ось дроссельной заслонки дополнительной камеры;
16
— рычаг, жестко соединенный с осью;
17
— палец рычага оси дроссельной заслонки дополнительной камеры;
кулиса;
19
— прорезь кулисы;
20 —
палец рычага оси дроссельной заслонки основной камеры;
21
— винт, ограничивающий закрытие дроссельной заслонки;
22 —
ось дроссельной заслонки основной смесительной камеры;
— радиусный паз кулисы;
24 —
возвратная пружина
Привод дроссельных заслонок карбюратора К-126Г работает следующим образом. При повороте рычага 13
(рис. 68,
б)
поворачивается ось
22
дроссельной заслонки основной смесительной камеры и палец
20
рычага, установленного на оси рычага
13.
Пока палец перемещается по радиусному пазу
23
кулисы и не соприкасается с его торцом, открывается дроссельная заслонка только основной смесительной камеры. При дальнейшем повороте рычага
13
палец
20
нажимает на торец радиусного паза
23
и начинает поворачиваться кулиса
18,
соединенная продолговатой прорезью
с пальцем
17
рычага
16,
установленного на оси дроссельной заслонки дополнительной камеры. Кулиса нажимает на палец
17,
который перемещается в продолговатой прорези 79 и поворачивается по радиусу вместе с рычагом
16
и осью 75, и дроссельная заслонка дополнительной смесительной камеры начинает открываться одновременно с дроссельной заслонкой основной камеры. Возвратная пружина
24
в этом случае закручивается, а после прекращения воздействия на рычаг
13
раскручивается, перемещая кулису в исходное положение, и плотно закрывает дроссельную заслонку дополнительной камеры.
К корпусу 4
(рис. 69, а) карбюратора сверху присоединена крышка
6
поплавковой камеры с воздушным патрубком, а снизу укреплен корпус
28
смесительных камер с дроссельными заслонками. Крышка поплавковой камеры и корпус карбюратора отлиты из цинкового сплава, а корпус смесительных камер — из алюминиевого сплава.
В корпусе карбюратора размещены поплавковая камера с поплавком 19
и игольчатым клапаном
17,
два больших
37
и два малых 9 диффузора, два главных топливных жиклера
24,
два воздушных жиклера
8,
две эмульсионные трубки
25,
установленные в колодцах, система холостого хода, ускорительный насос, экономайзер с общим механическим приводом, а также другие детали. Поплавковая камера карбюратора имеет смотровое окно
21
для контроля за уровнем топлива и состоянием поплавкового механизма. В крышке поплавковой камеры расположен сетчатый фильтр
18,
удерживаемый от смещения болтом.
Системы пуска двигателя, холостого хода и ускорительный насос размещены только в основной смесительной камере. Распылитель 11
экономайзера установлен в воздушном патрубке дополнительной камеры. Система пуска двигателя имеет воздушную заслонку
12
с двумя предохранительными клапанами
13,
рычаг 7 (см. рис. 68, а), соединенный тягой
10
с рычагом
12
малой частоты вращения. В систему холостого хода входят два жиклера: топливный
33
(рис. 69,
а)
и воздушный
16.
Выходные отверстия
30
и
31
системы холостого хода и регулировочный винт
32
расположены в патрубке основной смесительной камеры.
Главная дозирующая система есть в каждой смесительной камере. Она состоит из главного топливного жиклера 24,
воздушного жиклера
8,
эмульсионного колодца с эмульсионной трубкой
25
и двух диффузоров. Малый диффузор при помощи канала соединен с эмульсионным колодцем, т. е. распылитель главной дозирующей системы выведен в горловину диффузора. Дроссельная заслонка
29
основной смесительной камеры через систему тяг и рычагов связана с ускорительным насосом и экономайзером. Ускорительный насос состоит из поршня 7 с пружиной, шарикового
1
и нагнетательного
15
клапанов и распылителя
14.
Основными частями экономайзера являются шток 5 привода, клапан
3,
жиклер
2
полной мощности и распылитель
11.
При рассмотрении работы карбюраторов необходимо помнить, что воздушная и дроссельные (или дроссельная) заслонки карбюратора при различных режимах работы двигателя занимают следующие положения:
пуск холодного двигателя
— воздушная заслонка прикрыта, а дроссельные заслонки открываются на необходимую величину, так как они кинематически соединены с воздушной заслонкой; после пуска двигателя воздушную заслонку постепенно открывают;
малая частота вращения холостого хода —
воздушная заслонка открыта полностью, а дроссельные приоткрыты;
средние нагрузки двигателя
— воздушная заслонка открыта полностью, а дроссельные открыты примерно наполовину;
полная нагрузка двигателя
— воздушная и дроссельная заслонки открыты полностью или почти полностью. Необходимое обогащение горючей смеси, позволяющее получить максимальную мощность двигателя, обеспечивает вступающий в работу экономайзер или эконостат (рис. 69,6);
резкое открытие дроссельных заслонок —
необходимая приемистость двигателя достигается вступлением в работу ускорительного насоса.
Рассмотрим работу карбюратора К-126Г при различных режимах работы двигателя.
Пуск холодного двигателя. В работу вступают главная дозирующая система и система холостого хода основной смесительной камеры. Топливо поступает через главный жиклер 24
(рис. 69) в колодец и эмульсионную трубку
25.
Из колодца оно по каналу подается в горловину малого диффузора
9.
От главного жиклера
24
по отдельному каналу топливо поступает
Схемы карбюратора К-126Г и дополнительной смесительной камеры:
— схема карбюратора;
б
— схема дополнительной смесительной камеры с эконостатом и переходной системой; / — шариковый клапан ускорительного насоса;
2
— жиклер полной мощности;
3
— клапан экономайзера;
4
— корпус; 5 — шток привода экономайзера;
6
— крышка поплавковой камеры;
7— поршень ускорительного насоса;
— воздушный жиклер главной дозирующей системы;
9
— малый диффузор;
10 —
балансировочный канал;
11 —
распылитель экономайзера;
12 —
воздушная заслонка;
— предохранительный клапан;
14 —
распылитель
ускорительного насоса; 15 —
клапан; 16 —
воздушный жиклер системы
холостого хода; 17 —
— фильтр;
19 —
поплавок;
20 —
отверстие для
трубки подачи топлива в карбюратор;
смотровое окно;
22
и
23 —
пробки;
главный топливный жиклер;
эмульсионная трубка; 26 —рычаг;
27
— отверстие для трубки вакуумного регулятора опережения зажигания;
28
— корпус смесительных камер;
29
— дроссельная заслонка основной смесительной камеры;
30 к 31 —
отверстия системы холостого хода;
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Типы систем питания
Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:
- внутри двигательных цилиндров;
- вне двигательных цилиндров.
Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:
- топливную систему с карбюратором
- с использованием одной форсунки (с моно впрыском)
- инжекторную
Назначение и состав топливной смеси
Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).
Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.
Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.
У нормальной смеси характерно наличие 15 частей воздуха на часть топлива. Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.
Общее устройство системы питания
В системе питания двигателя имеются следующие основные части:
- бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
- топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
- устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
- блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
- топливный насос. Необходим для поступления топлива в топливопровод
- фильтры для очистки. Необходимы для получения чистых составляющих смеси
Карбюраторная система подачи топлива
Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.
Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.
Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.
Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.
После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.
Подробно об инжекторной системе
В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.
Инжекторные топливные системы
Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.
Рекомендуем: Какая коробка лучше: автомат или робот
Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.
В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.
Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.
Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском: 1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак
Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:
- угол поворота дроссельной заслонки
- степень разрежения во впускном коллекторе
- частота вращения коленчатого вала
- температура всасываемого воздуха и охлаждающей жидкости
- концентрация кислорода в отработавших газах
- атмосферное давление
- напряжение аккумуляторной батареи
- и др.
Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:
- топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
- появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
- достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
- обеспечивается лучшая приемистость двигателя
- в отработавших газах содержится меньше вредных веществ
Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.
Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.
Карбюратор: устройство и принцип действия
, часто называемый «
карб
» – часть системы питания автомобильного двигателя, где образуются определенные соединения при смешивании воздуха и топлива. В дальнейшем эта топливовоздушная смесь попадает в камеру сгорания. Данный элемент в совокупности с дроссельной заслонкой – является регулировщиком топлива, благодаря чему полученная смесь может быть обогащенной либо обедненной. Стехиометрическое состояние данного топливного компонента достигается при соотношении 1 г. бензина на 14,7 г. воздуха, а для запуска холодного двигателя требуется соотношение 10 к 1.
фотогалерея:
Всего существует три вида карбюраторов:
- Барботажный
(уже не используется). - Мембранно-игольчатый
– узел состоит из нескольких камер, разделённых мембранами и связанных штоком на конце которого находится игла закрывающая/открывающая подачу топлива. - Поплавковый
– существует в многих модификациях современных карбюраторов и имеет широкое применение.
Составляющие карбюраторной системы автомобиля
Устройство карбюратора в тривиальном варианте:
- поплавковая и смесительная камеры
- поплавок с запирающим клапаном игольчатого типа
- распылительная и диффузная системы
- бензиновые и воздушные каналы с жиклерами
- аэро- и дроссельные заслонки
Поплавковая камера
необходима для поддержки постоянного уровня бензина. Воздушной заслонкой заводится холостой двигатель автомобиля, обогащая топливовоздушную систему. Системой холостого хода обеспечивается подача бензина, когда не функционирует основная дозирующая система. Специальными винтами регулируется соотношение в карбюраторе топливо/воздух.
Ускорительный насос
подает дополнительное количества топлива – резко открываются дроссельные заслонки, чтобы можно было предупредить остановку мотора и избежать сбоев в эксплуатации мотора во время разгона автомобиля.
Переходная система
отвечает за переходный режим между основной дозирующей системой и автомобильным холостым ходом.
Система холостого хода
обеспечивает подачу нужного количества топлива в цилиндры двигателя при работе без нагрузки (на холостом ходу).
Главная дозирующая система
обеспечивает увеличения мощности двигателя за счет большей подачи топливно-воздушной смеси во время движения автомобиля.
Спрей-карбюраторы
Хотя различные поверхностные карбюраторы были доминирующими на протяжении первых десятилетий существования автомобиля, спрей-карбюраторы начали занимать существенную нишу на рубеже 19-20-го веков. Вместо того чтобы полагаться на испарение, эти карбюраторы фактически распыляли отмеренное количество топлива в воздух, который был засосан воздухозаборником. Эти карбюраторы используют поплавок (как Maybach и более ранние конструкций Benz). Но они действовали на основе принципа Бернулли, а также эффекта Вентури, как и современные устройства, например карбюратор К-68.
Одним из подтипов аэрозольных карбюраторов является так называемый карбюратор давления. Он впервые появился в 1940-х годах. Хотя карбюраторы давления напоминают аэрозольные только внешне, они на самом деле были самыми ранними примерами устройств принудительного впрыска топлива (инжекторов). Вместо того чтобы полагаться на эффект Вентури, чтобы сосать топливо из камеры, карбюраторы давления распыляли топливо из клапанов почти таким же образом, как современные инжекторы. Карбюраторы становились все более сложными в течение 1980-х и 1990-х годов.
Основные проблемы с карбюратором
Среди наиболее частых неисправностей в работе карбюратора отмечаются такие:
- протечка топлива
- нагар и запах на свечах зажигания
- нестабильный холостой ход
- нарушение регулировки карбюратора, загрязнение жиклеров
Протечка топлива
Для начала необходимо проверить давление бензина – оно соответствует отметке от 4 до 7 пси.
Наличие нагара и запаха на свечах зажигания
Данная неполадка указывает на то, что топливо подается в чрезмерных количествах из-за неправильного уровня бензина либо прогоревшего клапана.
Неровный холостой ход
В основном, проблемы данного характера возникают в проводке между педалью акселератора и карбюратором, то есть, не сугубо в карбюраторе.
Нарушение регулировки карбюратора, загрязнение жиклеров и каналов
Основную роль в приготовлении топливовоздушной смеси играют жиклеры – их загрязнение или повреждение ведет к нарушению работы
При таких неисправностях двигатель не в состоянии получать горючее в необходимой концентрации и объеме. Признаками этого являются:
- излишний расход топлива;
- снижение мощности автомобильного двигателя;
- из глушителя наблюдается выхлоп черного дыма и слышны хлопки;
- двигатель начинает перегреваться;
- снижается вязкость автомобильного масла.
Устранение неполадок в карбюраторной системе
Когда протекает бензин, а давление соответствует норме, тогда необходимо искать неполадку в поплавковой камере. В основном, ее заменяют на новую.
При наличии запаха и нагара на свечах, рекомендуется обратить внимание на поплавок. Это возникает при не отрегулированном поплавке, чрезмерном давлении бензина либо присутствует неполадка в поплавковой камере.
Когда на холостом ходу мотор автомобиля работает нестабильно, то чтобы найти поломку, необходимо проверить, нет ли в карбюраторе коррозийных изменений либо загрязнений. В последнем случае его необходимо тщательно почистить.
Ремонт, тюнинг и установка карбюратора
Устройство карбюратора — что было до инжектора?
С каждым годом, индустрия автомобилестроения предоставляет нам новые технические усовершенствования транспортных средств, делая современные автомобиле все менее похожими на своих исторических предков. Вот взять хотя бы двигатель, перенесший за свою историю не одно изменение.
Еще до недавнего времени, практически все силовые агрегаты были карбюраторные, однако сегодня их полностью вытеснила инжекторная система. Оно и неудивительно – к хорошему всегда быстро привыкаешь, но правда в том, что предшественники инжектора еще долго будут встречаться на дорогах нашей страны.
В связи с этим, информация об устройстве карбюратора, его функциях и предназначении, точно лишней не будет.
Предназначение карбюратора
Карбюратор является узлом системы питания двигателя внутреннего сгорания и предназначен для приготовления оптимального состава горючей смеси путем смешивания воздуха и жидкого топлива, а также последующей ее подачи в цилиндры мотора.
Карбюратор широко применяется на различных двигателях, которые обеспечивают работу самых разнообразных механизмов. Что касается автомобильной индустрии, то с 80-х годов прошлого века карбюраторные системы подачи топлива начали вытиснятся более современными инжекторными.
Принцип работы карбюратора базируется на обогащении горючего воздухом, после чего топливно-воздушная смесь попадает в цилиндры силового агрегата транспортного средства и приводит его в движение.
Среди некоторых автолюбителей бытует мнение, что мотор сам всасывает топливо, но это, конечно же, не так. Процессом его подачи занимается вышеупомянутое устройство, а точнее одна из его составляющих частей, именуемая диффузором карбюратора.
Именно он предназначается для сужения «горла» карбюратора, что в момент прохождения сквозь него воздушных потоков, вызывает разряжение воздуха и соответствующий спад давления.
После этого, сквозь маленькое отверстие для подачи топлива (установлено в этом месте) под большим давлением, топливная смесь перемещается из поплавковой камеры в «горло» карбюратора, а затем, уже обогащённое топливо, после прохождения выпускного коллектора, попадает в цилиндры силового агрегата.
Кроме того, в задачу карбюратора, также входит распознавание различных рабочих режимов двигателя: холостого хода (нейтральной передачи), средних оборотов мотора, максимальной нагрузки и работы автомобильного двигателя после полного охлаждения (к примеру, после ночи на морозе).
Реакция карбюратора, на каждый из названных режимов, должна быть разной, а соответственно, разными будут и процессы дозировки впрыскиваемого топлива и обогащения топливной жидкости кислородом, ведь каждая часть механизма обязана исправно работать и быть четко откалиброванной.
Внутреннее устройство карбюратора
В устройство самого обычного (простого) карбюратора, входят две основные составляющие – поплавочная и смесительная камеры. Процесс смешивания горючего, проходит на протяжении всего пути передвижения топлива и воздуха по впускному тракту, вплоть до самого попадания в цилиндры двигателя, а его началом, считается момент впрыска бензина в смесительную камеру.
Одним из важных критериев правильной работы карбюратора является точность регулировки уровня топливной смеси в поплавочной камере, которая проходит следующим образом: когда происходит потребление топлива и камера постепенно становится свободной, поплавок начинает опускаться вниз, открывая тем самым игольчатый клапан.
В этот момент, начинает действовать бензонасос, благодаря которому, топливная жидкость снова заполняет поплавочную камеру, а игольчатый клапан возвращается в исходное, закрытое положение. В результате проведенных действий, объем топливо-воздушной смеси камеры поддерживается на постоянном уровне.
Иногда, для повышения мощности мотора и увеличения скорости набирания оборотов, на карбюратор устанавливают электрический бензонасос.
Распылением горючей смеси в полости карбюратора, занимается специальный распылитель, представленный в виде трубки, установленной в смесительной камере. Также, важную роль в деятельности описанного устройства играет воздушная заслонка, размещенная над диффузором смесительной камеры.
Ее главной задачей является регулирование состава смеси, а значит по мере опускания данного элемента, количество топлива в ней будет увеличиваться. Благодаря наличию воздушной заслонки, а точнее обогащению с ее помощью топливо-воздушной смеси, водитель может завести машину даже после полного охлаждения.
Проще говоря, заслонка перекрывает подающиеся в карбюратор воздушные потоки и позволяет впрыскивать большее количество обогащенного горючего, которое поступает в цилиндры мотора из поплавочной камеры.
Таким образом, остывший мотор получает больше топлива и легче заводиться. Если в качестве дополнения, установить на карбюратор еще и автозапуск, то можно избежать необходимости «ручного» прогревания, а вместе с ним и вынужденного пребывания в холодной машине. Более того, при установке автозапуска, полезной будет и установка автоподсоса, которая предоставит возможность полной автоматичности всего процесса прогрева.
Чрезмерное заслонение воздушного зазора, вызывает переобогащение смеси и последующую остановку сгорания топлива. Управление топливо-воздушной смесью осуществляет дроссельная заслонка, установленная в нижней части смесительной камеры (со стороны двигателя).
Еще одним важным элементом правильного функционирования карбюатора есть упомянутый ранее диффузор. Он представляет собой некий участок сужения смесительной камеры, в котором наращивает скорость поступающий в мотор воздух, в результате чего у распылителя создается разрежение.
Как починить карбюратор
Сетчатый фильтр
Данный фильтр либо засоряется, либо повреждается. И чтобы узнать точно, что с ним, понадобится его вынимать. При сильном загрязнении достаточно хорошо промыть аккуратно в бензине, при видимых повреждения меняется на новый.
Пусковое устройство
Пусковое устройство, как и сетчатый фильтр, подвержен загрязнению и также нуждается в промывке и продувке сжатым воздухом.
Соединение в карбюраторе
Разгерметизация соединения, происходит во впускном или выпускном трубопроводах, также на корпусе ДЗ и других местах соединения карбюратора. Определить где подсасывает воздух поможет обычная мыльная пена или специальный дымо-генератор. На возникновения проблем с впускным трубопроводом могут еще указывать и следы копоти или пленка с топлива на месте неплотного соединения.
Когда сбои в работе происходят по причине не герметичного прилегания в месте соединения нижнего фланца карбюратора и впускного патрубка достаточно просто подтянуть гайки. Старайтесь подтягивать аккуратно и равномерно, чтобы не перекосился фланец карбюратора. Если подтяжка болтов проблему не решила, тогда стоит почистить место подсоса и поменять прокладку.
Ускорительный насос
Когда перестал работать ускорительный насос, тогда нужна его замена. Его детали ремонту не подлежать. В качестве профилактики насос моют и продувают. Еще желательно проверить ход перемещения рычагов и деталей диафрагмы. Отдельное внимание приделите шарику в распылителе — свободе его движения ничего мешать не должно.
Диафрагма экономайзера
В моделях карбюраторов, оснащенных экономайзером, проследите чтобы на диафрагме не было повреждений. А если стала короткая длина толкателя, то замените его вместе с диафрагмой.
Техническое обслуживание карбюратора К-126Г
Обслуживание устройства сводится к его чистке и регулировке. Что касается периодичности таких работ, то она должна проводиться не реже, чем один раз в год, а также при выявлении признаков неисправности устройства.
Чистка карбюратора предусматривает проведение следующих мероприятий:
- наружную очистку от грязи, пыли, масляного налёта дроссельного узла, корпуса поплавковой камеры и крышки;
- промывку и продувку жиклёров, распылителя, топливного фильтра, эмульсионных трубок, отверстий и каналов устройства;
- очистку воздушной и дроссельных заслонок.
Регулировка карбюратора подразумевает настройку:
- уровня топлива в камере поплавка;
- системы холодного запуска;
- системы холостого хода.
Для проведения полного технического обслуживания карбюратор рекомендуется снять с двигателя и разобрать.
Демонтаж карбюратора К-126Г
- набор гаечных ключей;
- набор отвёрток;
- чистая сухая тряпка.
Порядок выполнения работ:
- Снимаем воздушный фильтр с карбюратора. В зависимости от модификации двигателя и самого автомобиля он может иметь разную конструкцию и разные крепления. Обычно он крепится посредством резинового шланга и хомута.
Воздушный фильтр обычно крепится к карбюратору при помощи резинового шланга и хомута
После демонтажа фильтра ослабляем хомут на соединении топливного шланга и впускного штуцера устройства. Отсоединяем шланг.
Топливный шланг крепится при помощи хомутов
Отключаем вакуумный шланг регулятора угла зажигания.
Вакуумный шланг передает разрежение с впускной трубы на регулятор угла опережения зажигания
Отворачиваем винты (2 шт), крепящие трос привода заслонки. Отсоединяем трос.
Трос крепится двумя винтами: первый фиксирует оплетку, второй — жилу
Откручиваем гайку на рычаге механизма привода дросселей. Отсоединяем тягу управления.
Чтобы снять приводную тягу, нужно открутить гайку её крепления
Откручиваем гайки (4 шт), крепящие карбюратор к впускной трубе двигателя.
Для демонтажа карбюратора необходимо открутить 4 гайки, крепящие устройство к впускной трубе
После демонтажа карбюратора нужно закрыть отверстия во впускной трубе
Демонтаж крышки камеры поплавка и отсоединение дроссельного узла
Для того чтобы разобрать устройство, необходимо от корпуса поплавковой камеры отсоединить крышку, а потом корпус камер смешивания.
Порядок выполнения работ:
- Расшплинтовываем верхний конец приводной тяги экономайзера. Отсоединяем тягу.
- Отвёрткой отворачиваем 7 винтов, крепящие крышку к корпусу поплавковой камеры.
Для снятия крышки необходимо открутить 7 винтов, расположенных по её окружности
Поддев шлицевой отвёрткой крышку, аккуратно, чтобы не повредить прокладку, отсоединяем её и снимаем.
Для отсоединения крышки её нужно аккуратно поддеть тонкой шлицевой отвёрткой
Не кладите крышку поплавком вниз: нарушится регулировка поплавкового механизма.
Крышку поплавковой камеры нельзя класть поплавком вниз
Дроссельный узел карбюратора отсоединяется от корпуса поплавковой камеры путём выкручивания 4 винтов (шляпки находятся снизу).
Видео: разборка карбюратора К-126Г
Чистка карбюратора
Для того чтобы почистить карбюратор, необходимо:
- Отвернуть пробку и извлечь сетчатый фильтр.
В фильтре карбюратора собирается вся грязь, что находится в бензине
Перед чисткой все детали карбюратора нужно замочить в керосине
Статья в тему: Можно ли научиться вождению автомобиля на компьютере?
Сборка карбюратора
После чистки устройство можно собирать. Перед этим стоит оценить состояние прокладок, и при необходимости заменить их. Сборка устройства осуществляется в обратном порядке, т. е. сначала устанавливаются на место все мелкие детали, которые были подвергнуты чистке, а после соединяется поплавковая камера с корпусом камер смешивания. Крышка прикручивается в последнюю очередь.
Монтаж устройства
Закончив сборку, устанавливаем карбюратор на двигатель. Обратите внимание на состояние прокладки и ориентацию устройства. Не стоит переворачивать прокладку, чтобы устранить деформацию. Лучше сразу её заменить.
Закручивая гайки крепления устройства, не переусердствуйте. Применив излишнюю силу, можно сорвать резьбу на шпильках, а также деформировать привалочную плоскость карбюратора.
После монтажа подключаются шланги (топливный и вакуумный), а также подсоединяется трос привода воздушной заслонки и тяга механизма управления дросселями.
Настройка карбюратора К-126Г
В первую очередь выполняется настройка механизма поплавка. Она позволяет установить необходимый уровень бензина в камере. Порядок выполнения работ:
- Автомобиль устанавливаем на ровной площадке.
- Запускаем силовой агрегат и прогреваем до рабочей температуры.
- Глушим мотор и при помощи линейки измеряем уровень бензина в поплавковой камере. Замеры производим через специальное окно. Уровень должен быть в пределах 18,0–20,5 мм.
- В случае, если уровень не соответствует этим показателям, снимаем крышку камеры поплавка и подгибаем язычок крепления поплавка в ту или иную сторону. Одновременно добиваемся, чтобы расстояние от верхней его плоскости до плоскости разъёма камеры составляло 40–41 мм.
После этого можно приступать к настройке системы холодного запуска. Главный элемент здесь — полуавтоматическая заслонка, перекрывающая подачу воздуха. Её механизм посредством тяг и рычагов соединён с механизмом привода заслонки первичной камеры и автоматически открывает её при запуске на нужный угол.
Заслонка при утопленной ручке управления должна быть открыта полностью, а при выдвинутой — закрытой. Если она закрывается и открывается не до конца, нужно отрегулировать её положение посредством коррекции длины тяги. После регулировки необходимо убедиться, что трос двигается свободно и не заедает.
Заключительным этапом регулировки является настройка количества оборотов двигателя на холостом ходу. Проводится она путём вращения винта, регулирующего угол открытия дроссельной заслонки первичной камеры смешивания, а также другого винта, регулирующего обогащение и обеднение горючей смеси.
Количество оборотов коленвала силового агрегата, работающего на холостом ходу при рабочей температуре 80–900С должно составлять 450–550 об/мин.
Регулировка оборотов холостого хода проводится при помощи тахометра. Если конструкция автомобиля не предусматривает такого прибора, можно воспользоваться автомобильным тестером с его функцией, или автономным тахометром. Плюсовой щуп прибора подсоединяется к выводу «К» катушки зажигания, а минусовой — к «массе» машины.
Порядок регулировки оборотов холостого хода:
- Подключаем тахометр.
- Не запуская двигателя, полностью заворачиваем винт настройки смеси, но не зажимаем, а затем выкручиваем его на 2,5 оборота.
- Запускаем силовой агрегат, прогреваем его до температуры 80–90С, и винтом, регулирующим величину угла открытия дроссельной заслонки, устанавливаем минимальные обороты.
- Винтом качества выставляем обороты на уровне 600 об/мин.
- Проверяем, не глохнет и не «захлёбывается» ли мотор при резком нажатии на педаль акселератора.
- Первым винтом снижаем обороты до 450–550 об/мин.
Регулировка карбюратора
Карбюратор регулируют только на прогретом двигателе.
Нет смысла настраивать данную автомобильную систему на холостом двигателе. Также с дроссельной заслонки необходимо снять тягу педали газа, а затем отсоединить трубку, которая отвечает за вентиляцию картера, чтобы удостовериться, нет ли вакуумной пробки в трубке регулятора опережения.
Затем нужно закрутить по одному винты качества строго по часовой стрелке, пока не станет работа мотора достаточно жесткой. Когда двигатель начнет лихорадить, отвернуть необходимо на оборот назад каждый винт, чтобы двигатель начал работать плавно. Как регулировать карбюратор лучше смотреть на конкретном примере наглядно.
Тюнинг карбюратора
Доработка или другими словами тюнинг карбюратора производится дабы достичь максимальной мощности. На впуске, карбюратор автомобиля, должен иметь минимальное сопротивление, поскольку по-другому сложно добиться приемлемого качества смеси и наполнения цилиндров при средних и высоких оборотах двигателя. Выжимать максимум мощности на больших оборотах дает расточка второй камеры и подъем впускных клапанов выше 10,25 мм (актуально для двигателей 1.5 л с высокими распредвалами).
Доработанный карбюратор с диаметром диффузоров 24/24 дает прибавку при установке даже тюнинговый мотор. Но стоит отметить, что на малых оборотах и частичных нагрузках двигателя, обычное увеличение диаметра диффузоров приведет к ухудшению его работы, поскольку снижается разряжение в области диффузора и ухудшается распыление бензина и гомогенизации смеси.
Доводка карбюратора
– это не только замена всех топливных жиклеров на другие, большего сечения, а изменение всех тарировочных данных карба и его начинки. Также в конструкцию карбюратора вводятся дополнительные дозирующие системы. С этой целью в корпусе карбюратора сверлятся дополнительные дозирующие каналы.
Как работает системы питания карбюраторного двигателя: устройство и схема
Фундаментальным узлом автомобиля является ДВС. Но его функционирование невозможно без действия множества других систем, в том числе и топливной. Схема системы питания карбюраторного двигателя включает в себя набор определенных компонентов, функционирование которых осуществляется согласно определенному принципу работы.
Двигатель любого автомобиля считается его «сердцем». Именно благодаря тому, что этот основополагающий механизм производит крутящий момент, вступают во взаимодействие многие электрические и механические процессы авто в целом.
Но, как и любая другая составляющая всего комплекса взаимосвязанных узлов, мотор не способен действовать обособленно, не затрагивая и не вовлекая многие системы, которые его обслуживают и поддерживают правильное функционирование (питание, охлаждение, выпуск отработавших газов и др.).
К каждому автомобилю может быть применено такой термин как «ходовой запас». Если утрировать, то им определяются те количественные расстояния, которые должна преодолевать автомашина при условии заполненного до максимального предела наполненного топливного бака, исключая возможность дозаправки.
На данную величину, конечно, влияет совокупность множества составляющих (погода, дорожное покрытие, возраст транспортного средства, индивидуальная особенность вождения и многое другое.), но наиболее важная роль отводится все-таки эксплуатационному состоянию системы питания и корректности происходящих в ней процессов.
Основы топливной системы
Схема системы питания карбюраторного двигателя построена на следующих основных действиях:
- подача горючего;
- фильтрация его и последующее складирование;
- воздухоочистка;
- подготовка топливно-воздушной смеси;
- запуск состава в цилиндры мотора
Система поступления и циркуляции топлива напрямую реагирует на качественную и количественную составляющую поступаемого бензина в проекции рабочих режимов ДВС.
Классический вариант топливной системы включает такие составляющие компоненты, как:
- бак с горючим (хранение бензина);
- топливный насос (образование необходимого давления, подача горючего в принудительном порядке);
- топливопровод (совокупность трубок, магистралей, шлангов для циркуляции топливной смеси);
- фильтры (воздушный и топливные);
- карбюратор (подготовка и образование топливно-воздушного состава)
Принцип работы системы питания для карбюраторных двигателей достаточно простой. Топливо, содержащееся в емкости, на старте своей циркуляции подвергается фильтрации. Одновременно в работу вступает топливный насос, заставляющий бензин двигаться по топливной магистрали к карбюратору. Там начинается приготовление топливно-воздушного состава необходимых пропорций, только после этого она попадает к рабочим цилиндрам ДВС.
Далее более подробно будут рассматриваться устройство и эксплуатационные показатели каждого элемента системы топлива карбюраторного мотора.
Топливный бак
Представляет собой емкость, изготовленную из прочного металла (стали) методом штамповки. Объем топливного бака варьируется от 40 до 80 литров бензина, зависит от модели автомобиля, такого количества топливной смеси согласно нормативам хватает приблизительно на 500 км пробега. Как правило, бак крепится в задней части машины.
Во внутренней полости бака имеется перегородка, придающая жесткость всей конструкции, а также служащая неким препятствием для образования волн при движении автомобиля. Бак наполняется бензином через специальную горловину, которая оснащена трубкой. Через нее в процессе заправки выходят излишки воздуха.
Во многих моделях автомобилей в конструкции бензобака (нижняя часть), предусмотрено дополнительное закрывающееся отверстие. Через него можно не только полностью слить бензин, удалить воду, но и полностью очистить его полость от крупного мусора.
Также в бензобаке предусмотрено наличие сетчатого фильтра, который помогает процессу очистки топливной смеси. Уровень бензина, находящегося в баке можно отслеживать при помощи установленного датчика, который представляет собой поплавок с реостатом.
Перемещение поплавка свидетельствует об определенном уровне наполнения бака топливной смесью. Это сводится к увеличению возникшего сопротивления непосредственно в цепи и, соответственно, к понижению величины напряжения на указателе. Количество содержимого горючего бензобака отражается определенными показателями на приборной панели.
Насос
Обеспечивает подачу бензина для впрыскивания,поддерживает необходимый уровень давления для корректной работы топливной магистрали в целом. Топливный насос карбюраторного двигателя монтируется непосредственно в конструкцию бензобака, при этом оснащается электроприводом. В некоторых моделях авто можно, как дополнительный усиливающий элемент, установить подкачивающий насос.
Топливопровод
Представляет собой магистраль, состоящую из различных трубок, шлангов, которые определенным образом соединяют элементы системы между собой. Различают подающий и сливной тип топливопровода. В первом случае поддерживается необходимый рабочий показатель давления, а во втором происходит обратный отвод излишек бензина.
Фильтры
Топливный фильтр предназначен для первоначальной очистки горючего от посторонних загрязнений, чтобы избежать нежелательных поломок и некорректного действия каждого элемента системы. Последнее время топливный фильтр все чаще оснащается специальным клапаном редукционного действия. Он отвечает за контроль и регулирование рабочего давления.
Образовавшиеся излишки горючего от клапана отводятся посредством сливного топливопровода. Если в конструкции двигателяесть топливный впрыск, то установка клапана редукционного типа не предусматривается.
Комплексная фильтрация топливной смеси производится фильтрами первоначальной (грубой) и последующей (тонкой) очистки. Первоначально бензин очищается фильтром — отстойником, он позволяет отделить объемные смеси механического типа, а такжеводу. Конструкция таких фильтров подразумевает наличие корпуса, элемента фильтрации и непосредственно отстойника.
Фильтрующий элемент собран из нескольких металлических не большой толщины пластин с перфорацией и выступами. Эти пластины в собранном виде насажены на стержень и прижаты к корпусу посредством пружин. Топливная смесь пропускается сквозь монтажные промежутки, образованные между соседними пластинами. А вот большие по объему примеси и загрязнения остаются на дне самого отстойника. Удалить их можно через отверстие, имеющее пробку.
В процессе очистки горючего от мелких примесей используется фильтр тонкой очистки. Его конструкция аналогична предыдущему фильтру. Включает в себя корпус, сетчатый или керамический фильтрующего элемента и отстойника. Крепится вся конструкция при помощи пары «гайка-болт».
Воздушный фильтр отвечает за пылевую очистку воздуха, который непосредственно попадает в карбюратор. Это нужно для того, чтобы снизить степень притягивания мельчайших кварцевых кристаллов смазанными деталями, а значит, предотвратить ранний износ узлов и механизмов.
По принципу действия воздушные фильтры подразделяются на инерционно-масляный и сухой тип. В устройство первых входят: корпус со специальной ванночкой, синтетический элемент фильтрации и воздухозаборник. Если запущен двигатель авто, то воздух, проходящийсквозь кольцевую щель внутренней корпусной части, начинает соприкасаться с масляной поверхностью, и меняет траекторию своего движения.
В итоге крупные частицы пыли от такой резкой смены направления цепляется за масляную поверхность. Затем первоначально очищенная порция воздуха попадает уже на фильтрационный элемент, который производит уже более тщательную очистку от мельчайших пылевых частиц. При сильном загрязнении фильтр подлежит тщательной промывки.
Воздушный сухой фильтр состоит из корпуса, воздухозаборника и элемента фильтрации, изготовленного из картона пористой структуры. Это позволяет его легко заменить, если возникла такая необходимость.
Карбюратор
Представляет собой прибор, служащий для подготовки топливно-воздушной смеси надлежащего состава. Воздух перемешивается в карбюраторе с жидким топливом, например, с бензином в необходимых пропорциях, а затем поступает к цилиндрам ДВС. Такое смешивание заложено как основополагающий принцип действия карбюратора.
Сегодня существует множество вариантов конструктивного исполнения данного прибора. Но, наиболее востребованным остается поплавковый карбюратор. Работает по следующему принципу.
Бензин, нагнетаемый бензонасосом, поступает в поплавковую камеру карбюратора, в которой необходимый уровень горючего поддерживается при помощи специального поплавка и игольчатого клапана. Когда расход бензина увеличивается, поплавок меняет свое положение, одновременно приоткрывается клапан, и в поплавковую камеру поступает новая порция топлива.
После того, как бензин залит до необходимого уровня, поплавок всплывает, клапан закрывается, и через входное отверстие прекращается подача топливной жидкости. Если утрировать, то действие поплавковой камеры карбюратора максимально схоже с принципом работы сливного бачка унитаза.
По распылительной трубке горючее из поплавковой камеры проникает в смесительную камеру, где микшируется с поступившей из воздушного фильтра очищенной порцией воздуха.
Непосредственное смешивание происходит следующим образом. При первом движении поршня от верхней до нижней мертвой точки клапан находится в открытом положении. При перемещении поршня вниз происходит всасывание очередной порции воздуха, которая пропускается через фильтр.
Затем при помощи диффузора движение воздуха значительно увеличивается, происходит его «закручивание», которое позволяет «зацепить» бензин из распылителя, при этом активно с ним перемешаться. При последующем движении поршня эта смесь через открытый клапан впуска проникает к цилиндрам. Все это происходит в смесительной камере, которая на языке автослесарей называется «кухней» карбюратора.
Количество горючего, поставляемого к цилиндрам, регулируется установленной дроссельной заслонкой, которая механически связана с педалью газа. Когда водитель нажимает на педаль, открывается заслонка, увеличивается содержание топливно-воздушной смеси, попадающей к цилиндрам, двигатель, соответственно, набирает обороты.
В случае отпускания педали происходит закрывание дроссельной заслонки, а значит, содержание смеси значительно снижается. В этом случае двигатель сбрасывает обороты.
Стоит отметить, что уровень бензина в поплавковой камере расположен ниже маркера выходного отверстия распылителя. Именно это предотвращает риск протекания топливной смеси при неработающем двигателе, даже если автомобиль находится наклонно.
Современные конструкции карбюраторов способны обеспечивать создание топливно-воздушной смеси в правильных пропорциях при всех рабочих режимах двигателя, что обеспечивает максимально корректную его работу.
Электробензонасос
Работу карбюратора по определению поддерживают различные механические устройства. Многие автовладельцы предпочитают некий синтез в устройстве, выбирая вариант подключения такого прибора, как электробензонасос. Его оснавная функция заключается в транспортировке топливной смеси из бака непосредственно к ДВС под нормативным давлением.
Принцип работы бензонасоса электрического типа аналогичен действию механического топливного насоса.
Установка своими руками
Первоначально следует произвести демонтаж датчика уровня топлива из бензобака. Затем в его крышке высверливается отверстие диаметром не более 7 мм, в которое впаивается трубка. Один конец трубки отгибается таким образом, чтобы в дальнейшем было возможно произвести слив обратки на максимальном расстоянии от топливозаборника.
Другой конец трубки сгибается параллельно его выходному отверстию. После этого усовершенствованная конструкция датчика вновь устанавливается в топливный бак. При этом важно не забыть соединить резиновую трубку с новым штуцером. Далее один конец пятиметрового резинового шланга одевается на штуцер топливозаборника.
Сам электробензонасос монтируется горизонтально относительно моторного щита на кронштейн через приготовленные резиновые подушки, которые, как правило, идут в комплекте с насосом.
При монтаже крайне важно задать корректное направление топливного потока. Всасывание должно проходить от расширительного бачка, а напор должен быть направлен в проекцию расположения ДВС.
После этого непосредственно на резиновый шланг фиксируется фильтр впрыска, а на другой штуцер — шланг диаметром в 5 см . С помощью хомутов его необходимо обтянуть и зафиксировать на кузове. Такие действия необходимы, что смесь топлива и воздуха двигалась по траектории «низ — верх».
В завершении на электробензонасосе следует произвести соединение с топливным баком. Делается это при помощи шланга диаметром в 12 мм и металлического переходника. Само же устройство подключается через силовое реле к контакту (12В) катушки зажигания.
Самостоятельная установка электробензонасоса является достаточно сложным процессом, такие работы лучше доверить профессионалу. В этом случае будет гарантировано его бесперебойное функционирование, что станет залогом корректной работы всей системы питания.
Источник http://koreec73.ru/dvigatel/toplivnaya-sistema-karbyuratornogo-dvigatelya.html
Источник http://akki-carsh.ru/dvigatel/kak-ustroen-karbyurator.html
Источник http://avtodvigateli.com/detali/sistemy-pitaniya-karbyuratornogo-dvigatelya.html