Toyota D-4 — система непосредственного впрыска

Система управления двигателем автомобилей toyota

Непосредственный впрыск Toyota система D-4

Мне пришлось увидеть в ремонте первый двигатель 3S-FSE в начале 2001года. Это была Toyota Vista. Я менял маслосъёмные колпачки и попутно изучал новую конструкцию двигателя. Первая информация о нем появилась позднее в 2003 на Сахалинском сайте у Кучера Владимира Петровича. Первые удачные ремонты давали незаменимый опыт для работы с этим типом двигателей, которыми сейчас никого не удивишь. Тогда же, я слабо представлял, с каким чудом имею дело. Двигатель был настолько революционным, что многие ремонтники просто отказывались от ремонтов. Применив ТНВД, высокое давление, два катализатора, электронный дроссель, шаговый мотор управления EGR, отслеживание положения дополнительных заслонок во впускном коллекторе, систему VVTi , и индивидуальную систему зажигания разработчики показали, что наступила новая эра экономичных и экологичных двигателей.

На фотографиях показан общий вид двигателей 3S-FSE, 1AZ-FSE, 1JZ-FSE.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Принципиальная блок-схема двигателя прямого впрыска на примере 1AZ-FSE выглядит следующим образом.

Toyota D-4 - система непосредственного впрыска

Следует отметить следующие важные системы и их элементы, которые наиболее часто имеют дефекты.

Система топливоподачи: погружной электрический насос в баке с сеткой топливозаборника и топливным фильтром на выходе, топливный насос высокого давления, установленный на головке блока цилиндров с приводом от распредвала, топливная рампа с редукционным клапаном.

Система синхронизации: датчики коленвала и распредвала. Система управления:

Датчики: массового расхода воздуха, температуры охлаждающей жидкости и впускаемого воздуха, детонации, положения педали газа и дроссельной заслонки, давления во впускном коллекторе, давления топлива в рампе, подогреваемые кислородные датчики;

Исполнительные устройства: катушки зажигания, блок управления форсунками и сами форсунки, клапан регулировки давления в рампе, вакуумный соленоид управления заслонками во впускном коллекторе, клапан управления муфтой VVT-i. Это далеко не весь перечень, но эта статья и не претендует на полное описание моторов прямого впрыска. Выше приведенной схеме, естественно, соответствует структура таблицы кодов неисправностей и текущих данных. При наличии в памяти кодов, начинать надо именно с них. Причём, если их много, анализировать их бессмысленно, надо переписать, стереть и отправить владельца в пробную поездку. Если загорится контрольная лампа, снова прочитать и анализировать уже более узкий перечень. Если нет – сразу переходить к анализу текущих данных.

При диагностировании двигателя сканер выдает дату порядка (80) параметров для оценки состояния и анализа работы датчиков и систем двигателя. Следует отметить, что большим недостатком у 3S-FSE является отсутствие в дате параметра – «давление топлива». Но, не смотря на это, дата очень информативна и, при правильном понимании, достаточно точно отражает работу датчиков и систем двигателя и АКПП.

Для примера посмотрим на одну правильную дату и несколько фрагментов даты проблемами с мотора 3S-FSE

На этом фрагменте даты видим нормальное время впрыска, угол зажигания, разряжение, скорость двигателя на холостом ходу, температуру двигателя, температуру воздуха. Положение дросселя и признак наличия холостого хода.

По следующей картинке можно оценить топливную коррекцию, показание датчика кислорода, скорость автомобиля, положение мотора EGR.

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

Далее видим включение сигнала стартера (важно при запуске) включение кондиционера, электрической нагрузки, гидроусилителя руля, педали тормоза, положение АКПП.

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

Затем включение муфты кондиционера, клапана системы улавливания паров топлива, клапана VVTi, овердрайва, соленоидов в АКПП

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

Много параметров представлено для оценки работы блока заслонки (электронного дросселя)

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

Как видно по дате можно легко оценить работу и проверить функционирование практически всех основных датчиков и систем двигателя и АКПП. Если выстроить в ряд показания, то можно быстро оценить состояние двигателя и решить проблему неправильной работы.

В следующем фрагменте показано увеличенное время впрыска топлива. Дата получена сканером DCN-PRO.

Toyota D-4 - система непосредственного впрыска

А на следующем фрагменте, обрыв датчика температуры входящего воздуха (-40 градусов), и ненормально высокое время впрыска (1,4мс при стандарте 0,5-0,6мс) на прогретом моторе.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Ненормальная коррекция заставляет насторожиться и проверить первым долгом наличие бензина в масле.

Блок управления забедняет смесь(-80%)

Toyota D-4 - система непосредственного впрыска

Наиболее важными параметрами, которые достаточно полно отображают состояние двигателя, являются строчки с показаниями длинной и короткой топливной коррекции; напряжения датчика кислорода; разрежение во впускном коллекторе; скорость вращения двигателя (обороты); положение мотора EGR; положение дроссельной заслонки в процентах; угол опережения зажигания, и время впрыска топлива. Для более быстрой оценки режима работы двигателя строчки с этими параметрами можно выстроить на дисплее сканера. Ниже на фото пример фрагмента даты работы двигателя в обычном режиме. В этом режиме датчик кислорода переключается, разрежение в коллекторе 30 кПа, дроссель открыт на 13%; угол опережения 15 градусов. Клапан EGR закрыт. Такая компоновка и выбор параметров позволят сэкономить время на проверке состояния двигателя.

Вот основные строчки с параметрами для анализа двигателя.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

А здесь дата в режиме обедненки. При переходе в обеднённый режим работы дроссель приоткрывается, открывается EGR, напряжение датчика кислорода около 0, разрежение 60 кПа, угол опережения 23 градуса. Таков режим работы в обеднённом режиме.

Для сравнения фрагмент даты обедненного режима снятой сканером DCN-PRO

Toyota D-4 - система непосредственного впрыска

Важно понимать, что если двигатель работает правильно, то при соблюдении определенных условий, он должен переходить в обеднённый режим работы. Переход происходит при полном прогреве двигателя и только после перегазовки. Много факторов определяют процесс перехода двигателя в обеднённый режим. При диагностировании следует учитывать и равномерность давления топлива, и давление в цилиндрах, и засаженность впускного коллектора, и правильную работу системы зажигания.

Теперь посмотрим дату с двигателя 1АZ-FSE.Разработчики исправили упущенные ошибки, есть строчка с давлением. Теперь можно без хлопот оценивать давление в различных режимах.

На следующей фотографии видим в обычном режиме давление топлива 120кг.

Toyota D-4 - система непосредственного впрыска

В обеднённом режиме давление снижено до 80 кг. А угол опережения задан 25 градусов.

Toyota D-4 - система непосредственного впрыска

Дата с двигателя 1JZ-FSE практически не отличается от даты 1AZ-FSE.Отличие работы только в том, что при обеднёнке давление понижено до 60-80 кг. В обычном режиме 80-120кг. При всей полноте даты, которые выдает сканер, по моему мнению, не достает одного очень важного параметра для оценки состояния долговечности насоса. Это параметр работы клапана регулятора давления. По скважности управляющих импульсов можно оценить «силу» насоса. Такой параметр есть в дате у Nissan.Ниже приведены фрагменты даты от двигателя VQ25 DD.

Здесь хорошо видно как происходит регулировка давления при изменении управляющих импульсов на регуляторе давления.

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

На следующей фотографии представлен фрагмент даты (основных параметров) двигателя 1JZ-FSE в обеднённом режиме.

Toyota D-4 - система непосредственного впрыска

Следует отметить, что двигатель 1JZ-FSE способен работать без высокого давления (в отличие от 4-х цилиндровых собратьев), автомобиль при этом способен передвигаться. Однако при возникновении любых серьезных, и не очень серьёзных помех (неисправностей) перехода в обедненный режим не произойдет. Грязная заслонка, проблемы в искрообразовании, топливоподаче, газораспределении не позволяют сделать переход. При этом давление блок управления понижает до 60 кг.

На этом фрагменте можно увидеть отсутствие перехода и приоткрытую заслонку, что говорит о загрязнении канала хх. Обеднённого режима не будет. И для сравнения фрагмент даты в обычном режиме.

Toyota D-4 - система непосредственного впрыскаToyota D-4 - система непосредственного впрыска

На первом двигателе с НВ конструкторы применили разборные инжекторы. Топливная рейка имеет 2х этажную конструкцию разных диаметров. Это необходимо для выравнивания давления. На следующем фото топливные элементы высокого давления двигателя3S-FSE.

Топливная рейка, датчик давления топлива на ней, клапан аварийного сброса давления, инжекторы, топливный насос высокого давления и магистральные трубки.

Toyota D-4 - система непосредственного впрыска

Здесь топливная рейка двигателя 1AZ-FSE,она имеет более простую конструкцию с одним проходным отверстием.

Toyota D-4 - система непосредственного впрыска

А на следующей фотографии представлена топливная рейка от двигателя 1JZ-FSE. Датчик и клапан расположены рядом, инжекторы отличаются от 1AZ-FSE только цветом пластика обмотки и производительностью.

Toyota D-4 - система непосредственного впрыска

В двигателях с НВ работа первого насоса не ограничена 3,0 килограммами. Здесь давление несколько выше порядка 4,0 — 4,5кг для обеспечения полноценного питания ТНВД на всех режимах работы. Замер давления при диагностике, можно производить манометром через входной порт прямо на ТНВД.

При запуске двигателя давление должно «набиваться» до своего пика за 2-3 секунды, иначе запуск будет долгим или его не будет вовсе. Ниже на фото замер давления на двигателе 1AZ-FSE

Toyota D-4 - система непосредственного впрыска

На следующем фото замер — давления первого насоса на двигателе 3S-FSE(давление ниже нормы, первый насос нужно заменить.)

Toyota D-4 - система непосредственного впрыска

Так как двигатели выпускались для внутреннего рынка Японии, то степень очистки топлива не отличается от обычных двигателей. Первый заслон сетка перед насосом.

Toyota D-4 - система непосредственного впрыска

Для сравнения грязная и новая сетки первого насоса двигателя 1AZ-FSE.При таких загрязнениях сетку нужно менять или чистить карбклинером. Бензиновые отложения очень плотно пакуют сетку, понижается давление первого насоса.

Toyota D-4 - система непосредственного впрыска

Затем второй заслон-фильтр тонкой очистки двигатель (3S-FSE) (кстати сказать, воду он не задерживает).

При замене фильтра нередки случаи неправильной сборки топливной кассеты. При этом происходит потеря давления и не запуск.

Toyota D-4 - система непосредственного впрыска

Далее на фотографиях представлены для сравнения новые и забитые грязью входные сетки, варианты фильтров от двигателя 1AZ-FSE.

Toyota D-4 - система непосредственного впрыска

Так выглядит топливный фильтр в разрезе после 15 тысяч пробега. Очень приличный заслон бензиновому мусору. При грязном фильтре переход в обеднённый режим либо очень долгий, либо его нет вообще.

Toyota D-4 - система непосредственного впрыска

И последний заслон фильтрации топлива сетка на входе ТНВД. От первого насоса топливо с давлением примерно 4 Атм поступает в ТНВД ,затем давление поднимается до 120 Атм и поступает в топливную рейку к инжекторам. Блок управления оценивает давление по сигналу датчика давления. ЕСМ корректирует давление, при помощи клапана регулятора на ТНВД. При аварийном повышении давления срабатывает редукционный клапан в рейке. Так вкратце организована топливная система на двигателе. Теперь подробнее о составляющих системы и о способах диагностирования и проверки.

ТНВД

Топливный насос высокого давления имеет достаточно простую конструкцию. Надежность и долговечность насоса зависят (как и многое у Японцев) от различных мелких факторов, в частности от прочности резинового сальника и механической прочности напорных клапанов и плунжера. Структура насоса обычная и очень простая. В конструкции нет революционных решений. Основа — плунжерная пара, сальник разделяющий бензин и масло, напорные клапана и электромагнитный регулятор давления. Основным звеном в насосе является 7мм плунжер. Как правило, в рабочей части плунжер не сильно изнашивается (если конечно не применяется абразивный бензин.) Основная проблема в насосе износ резинового сальника (срок жизни которого определяется не более 100тыс. км. пробега). Этот пробег, конечно же, занижает надежность двигателя. Сам же насос стоит безумных денег 18-20 тысяч рублей (Дальний Восток). На двигателях 3S-FSE применялись три различных ТНВД один с верхним расположением клапана регулятора давления и два с боковым.

Далее представлены фотографии насоса, и детали его составляющие.

Toyota D-4 - система непосредственного впрыска

Насос в разборе, напорные клапана, регулятор давления, сальник и плунжер, посадочное место сальника. Насос в разборе двигателя 3S-FSE.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

При эксплуатации на низкокачественном топливе происходит коррозия деталей насоса, что приводит к ускоренному износу и потере давления. На фото видны следы износа в сердечнике клапана давления и упорной шайбе плунжера.

Способ диагностирования насоса по давлению и по протечке сальника.

На сайте Источник Источник http://forum.autodata.ru я уже выкладывал методу проверки давления по напряжению датчика давления. Лишь напомню некоторые детали. Для контроля давления приходится использовать показания, снятые с электронного датчика давления. Датчик установлен на торце раздаточной топливной рейки. Доступ к нему ограничен и следовательно замеры легче производить на блоке управления. Для Тойоты Виста и Нади это вывод Б12 – ЭБУ двигателя (цвет провода коричневый с жёлтой полосой) Датчик питается напряжением 5в. При нормальном давлении показания датчика изменяются в диапазоне(3,7-2,0 в.)- сигнальный вывод на датчике PR. Минимальные показания, при которых двигатель еще способен работать на хх -1,4 вольта. Если показания от датчика будут ниже 1,3 вольта в течение 8 секунд — блок управления зарегистрирует код неисправности Р0191 и остановит двигатель.

Правильные показания датчика на хх -2,5 в. При обедненке — 2,11 в

Toyota D-4 - система непосредственного впрыска

Ниже на фотографии пример замера давления. Давление ниже нормы — причиной потери неплотность в напорных клапанах ТНВД.

Toyota D-4 - система непосредственного впрыска

Регистрировать протечку бензина в масло нужно при помощи газоанализа. Показания уровня СН в масле не должны превышать 400 единиц на прогретом двигателе. Идеальный вариант 200-250 единиц.

Toyota D-4 - система непосредственного впрыска

Зонд газоанализатора при проверке вставляют в маслоналивную горловину, а саму горловину закрывают чистой ветошью.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Аномальные показания уровень СН-1400 единиц — насос требует замены. При протекании сальника в дате будет зарегистрирована очень большая минусовая коррекция.

А при полном прогреве, с протекающим сальником, обороты двигателя будут сильно прыгать на хх, при перегазовках мотор периодически глохнет. При нагреве картера бензин испаряется и через линию вентиляции вновь попадает во впускной коллектор, дополнительно обогащая смесь. Датчик кислорода регистрирует богатую смесь, а блок управления пытается её забеднить. Важно понимать, что в такой ситуации совместно с заменой насоса необходимо сменить масло с промывкой двигателя.

На следующей фотографии фрагменты замера уровня СН в масле (завышенные значения)

Toyota D-4 - система непосредственного впрыска

Способы ремонта насоса.

Давление в насосе пропадает очень редко. Потеря давления происходит из-за выработки шайбы плунжера, либо из-за пескоструя клапана- регулятора давления. Из практики плунжера практически не изнашивались в рабочей зоне. Зачастую приходится приговаривать насос из-за проблем с сальником, который, стираясь, начинает пропускать топливо в масло. Проверить наличие бензина в масле не сложно. Достаточно померить СН в маслоналивной горловине на прогретом работающем двигателе. Как уже отмечалось ранее, показания должны быть не больше 400 единиц. Родной сальник осаживается в тело насоса. Это важно при изготовлении замены старому сальнику.

В работе участвует как внутренняя часть, так и наружная. Виктор Костюк из Читы предложил менять сальник на цилиндр с колечком.

Toyota D-4 - система непосредственного впрыска

Эта идея целиком принадлежит ему. Пытаясь воспроизводить сальник Виктора, мы столкнулись с некоторыми трудностями. Во — первых старый плунжер имеет заметный износ в районе работы сальника. Он составляет 0,01мм. Этого оказалось достаточно для разрезания резинки нового сальника. Вследствие чего происходил пропуск бензина в масло.

Toyota D-4 - система непосредственного впрыска

Во – вторых пока еще мы не можем найти оптимальный вариант внутреннего диаметра кольца. И ширины канавки. В третьих нас волнует вопрос о необходимости второй канавки. В родном сальнике два резиновых конуса. Если грамотно рассчитать все механические составляющие, трение, то можно будет продлить жизнь насоса на неопределённый срок. И избавить клиентов от грабительских цен на новый насос.

Ремонт же механической части насоса заключается в притирке напорных клапанов и шайбы от следов износа. Напорные клапана одинаковых размеров, они легко притираются любым доводочным абразивом для притирки клапанов.

На фото увеличенный клапан. Хорошо видна радиальная и выработка.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Я встречал один сомнительный вид ремонта насоса. Ремонтники приклеивали клеем на основной сальник насоса встык часть сальника от двигателя 5А. Внешне все было красиво, но только вот бензин обратная часть сальника не держала. Такой ремонт недопустим и может повлечь возгорание двигателя. На фотографии приклеенный сальник.

Следующее поколение насосов двигателей 1AZ и 1JZ несколько отличается от своего предшественника.

Toyota D-4 - система непосредственного впрыска

Изменён регулятор давления, оставлен лишь один напорный клапан и он не разборный, в сальник добавлена пружина, корпус насоса стал несколько меньше. Отказов и протеканий у этих насосов гораздо меньше, но все, же срок службы не большой.

Далее на фотографиях — внешний вид насоса и сальник с пружинным кольцом, управляющий клапан, плунжер.

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Топливная рейка, инжекторы и клапан аварийного сброса давления.

На двигателях 3S-FSE японцы применили впервые разборную форсунку. Обычный инжектор способный работать при давлении 120 кг. Следует отметить, что массивный металлический корпус и проточки под захват подразумевали долговечное использование и обслуживание.

Рейка с инжекторами располагается в труднодоступном месте под впускным коллектором и шумовой защитой.

Toyota D-4 - система непосредственного впрыска

Но все же, демонтаж всего узла может быть легко осуществлен снизу двигателя, не прилагая больших усилий. Единственная проблема раскачать закисший инжектор специально изготовленным ключом. Ключ на 18 мм со сточенными краями. Все работы приходится производить через зеркало из-за труднодоступности.

Toyota D-4 - система непосредственного впрыска

Далее на фото общий вид демонтированного инжектора(инжекторов) двигателя 3S-FSE,вид загрязнённого сопла (распыла).

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Toyota D-4 - система непосредственного впрыска

Как правило, при демонтаже, всегда заметны следы закоксовки сопла. Эту картину можно увидеть при использовании эндоскопа, заглянув в цилиндры.

АВТОМОБИЛЬНЫЕ ЭЛЕКТРОСХЕМЫ

Вы используете Internet Explorer 6, или старше. Мы настоятельно рекомендуем вам поискать другой браузер или новейшую его версию, чтобы сделать свою работу в интернете более приятной, и соответствующей новейшим стандатрам.

Система управления двигателем автомобилей Toyota Corolla

Система зажигания с электронным блоком управления автомобилей Toyota Corolla.

В продолжение темы по электропроводке автомобилей Toyota Corolla представлена схема электронного управления двигателем. Схема состоит из двух рисунков — второй продолжение первой. Вы можете сохранить схемы кликнув по ним мышью, а затем, стрелкой снизу “полный размер” увеличить, а правой кнопкой выбрать “сохранить рисунок как …”

Система управления двигателем автомобилей Toyota Corolla

Toyota D-4 - система непосредственного впрыска

система управления двигателем автомобилей Toyota Corolla рис.1

  1. — Блок предохранителей
  2. — Предохранитель мощность 3W
  3. — Аккумулятор
  4. — Замок зажигания
  5. — Предохранитель системы зажигания, мощность 10A
  6. — От выключателя, блокирующего включение стартера при включенной передаче (для моделей с автоматической коробкой передач). Или от замка зажигания (для моделей с механической коробкой передач)
  7. — Интегральное реле
  8. — Соединение проводов
  9. — Предохранитель мощность 30А
  10. — Реле размыкания цепи
  11. — Предохранитель системы эпектронного впрыска топлива. мощность 15А
  12. — Центральное реле системы электронного впрыска топлива
  13. — Предохранитель приборного щитка, мощность 10A
  14. — Интегральное реле
  15. — Топливный насос

Система управления двигателем автомобилей Toyota Corolla

Toyota D-4 - система непосредственного впрыска

Система управления двигателем автомобилей Toyota Corolla рис.2

  1. — Инжекторы
  2. — Контрольный разъем системы подачи топлива
  3. — Клапан прекращения подачи топлива
  4. — Контрольный разъём системы подачи топлива
  5. — Вакуумный клапан (для стабилизации работы двигателя в режиме холостого хода)
  6. — Переменный резистор
  7. — Вакуумный датчик
  8. — Контрольный разъём
  9. — Датчик температуры охлаждающей жидкости двигателя
  10. — Приборный щиток
  11. — Контрольная лампочка работы двигателя
  12. — Монитор эконометра
  13. — Датчик открытия дроссельной заслонки
  14. — Разъем подключения электронного блока управления двигателя
  15. — Электронный блок управления двигателя
  16. — От предохранителя задних габаритных огней. От предохранителя задней правой габаритной фары
  17. — От предохранителя обогревателя заднего стекла
  18. — Диоды
  19. — Датчик температуры поступающего воздуха
  20. — К спидометру (на приборном щитке)
  21. — От реле стартера (для моделей с механической коробкой передач с правым расположением руля).
    От выключателя, блокирующего включение стартера при включенной передаче (для моделей с автоматической коробкой передач)
  22. — Датчик содержания кислорода
  23. — Разъем подключения приборного щитка
  24. — От комбинированной системы зажигания
  25. — К усилителю кондиционера
  26. — От соленоида повышающей передачи
  27. — Датчик детонационного сгорании топлива

Похожие авто электро схемы

  • Схемы управления питанием и охлаждением автомобиля Ford Sierra с дизельным двигателем. (0)
  • Схемы систем зажигания и зарядки автомобилей Toyota Corolla. (0)

Автор: admin
Последнее редактирование: 09 Июнь 2011 в 15:50

Система впрыска TCCS автомобилей фирмы Toyota

Toyota D-4 - система непосредственного впрыска

    14424 Просмотра

Toyota D-4 - система непосредственного впрыска

Основы функционирования и самодиагностика.

Как известно, абсолютное большинство японских автомобилей вообще, и Тойот в частности, оснащаются не карбюраторами, а системами впрыска топлива. Есть мнение, что впрыск — это хорошо, современно и прогрессивно. Также есть другое мнение, диаметрально противоположное первому: впрыск — это сложно, дорого, неремонтопригодно. Этого мнения придерживаются в основном автовладельцы со стажем, имеющие богатый опыт эксплуатации отечественной техники и прекрасно знающие, что такое карбюратор, но не знающие, что делать с этими «новомодными» компьютерами, инжекторами, датчиками и т.д. Разумеется, для понимания того, как работает принципиально другая система питания, нужно, во-первых, иметь желание разобраться в этом, а во-вторых — нужна информация, которой очень и очень мало. Именно поэтому мы и попробуем сейчас в общих чертах дать описание функционирования системы впрыска TCCS (Toyota Computer Control System) фирмы Тойота, рассказать, как это все работает, и какие действия может предпринять автовладелец в случае, когда что-то не работает или работает не так.

Прежде всего, хотелось бы напомнить основные принципы работы любой современной автомобильной электронной системы впрыска. В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки (и скорость ее открытия), расчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха. После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

Как все просто, скажут многие и, в общем-то, будут правы — в системе впрыска есть одна-единственная сложность — это сложная программа, находящаяся в памяти компьютера и составленная таким образом, чтобы учитывать все разнообразие режимов работы двигателя и внешних условий, в которых ему приходится работать, а механические же узлы и составные части ничего сложного из себя не представляют и их можно перечислить по пальцам: это бензонасос, перепускной клапан топливной магистрали, клапан поддержания холостых оборотов (он же зачастую отвечает за прогревные обороты и компенсацию падения оборотов при включении кондиционера и других электроприборов), форсунки. Ну и, естественно, датчики. Один из таких датчиков, о котором в автомобильной среде ходит очень много разных слухов и «гаражных баек», является датчик кислорода или, иначе, лямбда-зонд. Чуть позже мы уделим ему особое внимание.

Итак, рассмотрим процесс функционирования системы TCCS. Следует сразу сказать, что автомобильные системы впрыска бывают двух типов — с обратной связью и без нее. Системами с обратной связью оснащаются автомобили, предназначеные для рынков развитых стран, таких как США, Япония, европейские страны, где нормы на содержание токсичных веществ в выхлопных газах очень строги и к автомобилям предъявляются соответствующие требования. В таких системах обязательно есть два компонента — каталитический нейтрализатор и лямбда-зонд. В системах без обратной связи ни лямбда-зонда, ни, как правило, нейтрализатора нет.

Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.

Компьютер (ECU)

Начнем мы, пожалуй, с компьютера управления, который общепринято называть ECU (Electronic Control Unit). В памяти компьютера находятся собственно программа управления и набор так называемых «карт» (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя. Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) — значения оборотов двигателя, а вдоль оси Z — значения углов открытия дроссельной заслонки. На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать то, для чего и городился весь этот огород — длительность электрического импульса, который должен быть подан на форсунки. В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки — все, цикл завершен. Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря. Но цель работы программы управления та же — конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате «добирается» до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.

Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.

Обратная связь

Обратная связь в системе TCCS, как и в любой другой системе впрыска, обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ECU, каждый экземпляр двигателя все- равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать. Кроме этого, сами карты могут быть изначально составлены неоптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи. Но главная цель при решении всех этих задач — это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют «стохиометрическим» или, иначе, «коэффициент лямбда» (именно отсюда и пошло название «лямбда- зонд»).

Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было расчитано, и не требуется ли коррекция состава горючей смеси. Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. В англоязычной литературе эта процедура обычно именуется «short term fuel trim». Но так происходит не всегда — в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами. Давайте посмотрим, когда же это происходит.

Режимы управления

Компьютер любой системы управления впрыском с обратной связью, в том числе и TCCS, в процессе работы может находиться в одном из двух режимов управления — либо в режиме замкнутого контура (closed loop), когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура (open loop), когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.

1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.

2. Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер системы TCCS постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана ISC (Idle Speed Control). В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогревные обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.

3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стохиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все-равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.

5. Резкое ускорение. Как только Вы нажимаете педаль газа «в пол» и полностью открываете дроссельную заслонку — компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой (а компьютер всегда в состоянии определить, велика ли нагрузка на двигатель) компьютер может переключиться в режим разомкнутого контура несколько раньше — уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.

6. Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта — например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси.

Таким образом, мы видим, что большую часть времени компьютер TCCS находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер «самообучается», корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя. Т.е., если, скажем, компьютер замечает, что в режиме замкнутого контура для достижения оптимального сгорания ему приходится все время обогащать топливо-воздушную смесь на, скажем, 5% относительно базовых значений, прописанных в соответствующих картах, то через некоторое время, когда он удостоверится в стабильности этого корректирующего коэффициента, он соответствующим образом модифицирует сами карты, тем самым влияя и на смесеобразование в режиме разомкнутого контура. Это и есть тот самый процесс «самообучения», о котором тоже ходит столько слухов. «По-научному» 😉 он называется «long term fuel trim». Следует заметить, что модифицированные карты сохраняются только в энергозависимой памяти компьюетра, поэтому после отключения аккумулятора восстанавливаются заводские значения этих карт, и компьютер должен «самообучиться» заново.

Все было бы просто замечательно, если бы не один фактор, портящий эту красивую картину — лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. В реальной жизни это приводит к тому, что рано или поздно после пробега по нашим дорогам система TCCS лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура. Естественно, что ничего хорошего из этого не получается, ведь большинство автомобилей к тому времени, когда они попадают к нам, уже немало побегали по японским дорогам, и двигатели их, увы, уже не новые. Впрочем, практика показывает, что и ничего особенно плохого тоже не происходит. Более того, система TCCS «нативных» японских Тойот в случае выхода из строя лямбда-зонда даже не зажигает на панели лампочку «check engine» в отличие от Тойот для американского и/или европейского рынков.

Кстати, следует заметить, что каталитический нейтрализатор (именуемый в народе «катализатор») и лямбда-зонд — это совершенно разные устройства, хотя их и можно назвать «сладкой парочкой» — как правило, если в машине есть лямбда-зонд — то есть и нейтрализатор, и наоборот. Оба эти устройства служат одной и той же цели — снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.

Каталитический нейтрализатор

Нейтрализатор, который представляет собой керамические «соты», покрытые активным слоем, способным дожигать остающиеся в выхлопных газах частички топлива, также выходит из строя после нескольких заправок этилированным бензином. Выходит из строя — это означает, что он теряет способность к дожиганию несгоревших частичек топлива. Известны случаи, когда соты катализатора оплавлялись, забивались нагаром и такой нейтрализатор уже создавал серьезную помеху на пути выходящих из двигателя выхлопных газов. Но следует сказать, что сама по себе заправка, даже неоднократная, этилированным бензином к такому результату не приведет. Причина оплавления нейтрализатора — это работа двигателя в течение длительного времени на обогащенной (или богатой) смеси, к чему может привести как выход из строя лямбда-зонда, так и неисправности в системе питания и зажигания.

Принцип работы датчика кислорода

Hаиболее распостраненый тип — циркониевый кислородный датчик. По сути дела он является переключателем, резко меняющим свое состояние на рубеже 0.5% кислорода в составе выхлопных газов. Это количество кислорода соответствует идеальному стохиометрическому соотношению воздух/топливо 14.7:1.

Обычно интерфейс датчика устроен таким образом: прогретый датчик (более 300 градусов Цельсия) при количестве кислорода менее 0.5% (богатая смесь), являясь слабым источником тока, выставляет на сигнальном выходе напряжение в диапазоне от 0.45 до 0.8 вольта, а при количестве кислорода более 0.5% (бедная смесь) — от 0.2 до 0.45 вольта. Какой точно уровень напряжения при этом — роли не играет, учитывается его положение относительно средней линии. Если ECU видит сигнал бедной смеси — топливо добавляется. Если в следующий измерительный период ECU видит сигнал богатой смеси — то подача топлива уменьшается. Таким образом состояние системы постоянно колеблется вокруг оптимальной величины и подача топлива настраивается по практическим результатам сгорания. Это позволяет системе адаптироваться к различным условиям работы. Частота колебаний напряжения на датчике кислорода составляет примерно 1-2 Гц на холостых оборотах и 10-15 Гц при 2000- 3000 об/мин.

Так как датчик работает надежно только в хорошо прогретом состояни, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя. Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).

Самодиагностика компьютера системы TCCS

Любая современная система впрыска имеет встроенную подсистему самодиагностики, которая позволяет определить различного рода неисправности датчиков, исполнительных механизмов и узлов системы. В результате процедуры самодиагностики компьютер вырабатывает диагностические коды, которые можно тем или иным способом извлечь из памяти компьютера и расшифровать в соответствии с таблицами. Способ извлечения этих кодов у разных производителей — разный. В системе TCCS для этого используется лампочка «Check Engine» на панели приборов, а переключение компьютера в режим вывода диагностических кодов осуществляется путем закорачивания пары контактов на диагностическом разъеме в моторном отсеке автомобиля. Диагностический разъем обычно находится вблизи левой опоры стойки передней подвески и представляет собой черную или серую коробочку с надписью «DIAGNOSIS» на крышке. Пошаговая процедура самодиагностики:
1. Начальные условия

  • напряжение в бортовой сети превышает 11 вольт
  • дроссельная заслонка полностью закрыта
  • трансмиссия в положении «нейтраль» (или «парковка» для автоматических трансмиссий)
  • кондиционер выключен
    2. Металлическим проводником (провод, разогнутая канцелярская скрепка) замкнуть контакты T (или TE1) и E1 на диагностическом разъеме.
    3. Повернуть ключ зажигания в положение «ON», но не запускать двигатель стартером.
    4. Считать коды путем подсчета количества миганий лампочки «Check Engine».

Считывание кодов диагностики. При считывании кодов возможны две ситуации:
1. Неисправностей не обнаружено:

  • лампочка будет мигать непрерывно с интервалом в 0.25 секунды
    2. Обнаружены неисправности:
  • последует серия миганий с интервалом 0.5 секунды — первая цифра кода (например, пять миганий — цифра 5)
  • пауза 1.5 секунды
  • серия миганий с с интервалом 0.5 секунды — вторая цифра кода (например, четыре мигания — цифра 4)
  • в случае, если кодов больше одного — пауза 2.5 секунды
  • после отображения всех кодов следует пауза в 4.5 секунды и процесс повторяется сначала

    Сброс кодов диагностики. Обнаруженные коды диагностики (за исключением кодов 51 и 53) будут находиться в памяти компьютера даже после устранения неисправности. Чтобы очистить область памяти компьютера, в которой хранятся коды, нужно при заглушенном двигателе вынуть на 30-60 секунд предохранитель EFI (15A) из блока предохранителей. Коды диагностики также сбрасываются при отключении аккумуляторной батареи.

    Таблица диагностических кодов. Все коды системы TCCS унифицированы и значение их одинаково для всех двигателей Toyota, но для каждого конкретного двигателя используется специфичное для него подмножество кодов. Например, код 34 может присутствовать только на двигателях, оборудованных турбонаддувом.

    КодКраткое описаниеПолное описание
    11ECU (+B)Кратковременный сбой питания ECU
    12RPM SignalОтсутствие сигналов «NE» или «G» на ECU в течение 2 секунд после того, как коленчатый вал начал проворачиваться стартером (при запуске двигателя)
    13RPM SignalОтсутствие сигнала «NE» на ECU в течение 50 мсек или более при скорости вращения коленвала 1000 об/мин и выше
    14Ignition SignalОтсутствие сигнала «IGf» на ECU в течение 4-х последовательных циклов зажигания
    21Oxygen SensorОбнаружен выход из строя датчика кислорода («OX»)
    22, 23Water Temperature SignalОбрыв или короткое замыкание (КЗ) в цепи датчика температуры охлаждающей жидкости («THW») в течение 0.5 сек или дольше
    24Intake Air Temperature Sensor signal.Обрыв или короткое замыкание (КЗ) в цепи датчика температуры воздуха («THA»), поступающего в двигатель, в течение 0.5 сек или дольше
    25Air-Fuel Ratio LeanНапряжение сигнала от датчика кислорода меньше, чем 0.45 вольта, в течение 120 сек
    26Air-Fuel Ratio ReachНапряжение сигнала от датчика кислорода больше, чем 0.45 вольта, в течение 120 сек
    27Sub Oxygen Sensor signalОбнаружен выход из строя дополнительного датчика кислорода
    28No. 2 Oxygen Sensor signalОбнаружен выход из строя датчика кислорода («OX2»)
    31Air Flow Meter(AFM) Signal или Manifold Absolute Pressure (MAP) signalTCCS с датчиком MAP: Обрыв или КЗ в цепи датчика датчика вакуума во впускном коллекторе (MAP) TCCS с датчиком AFM: Обрыв в цепи сигнала «VC» или КЗ между цепями сигналов «VS» и «E2»
    32Air Flow Meter AFM) SignalTCCS с датчиком AFM: (Обрыв в цепи сигнала «E2» или КЗ между цепями сигналов «VC» и «VS»
    34Turbocharger Pressure signalДавление наддува находится в недопустимых пределах. Возможно, некорректная работа AFM
    35Turbocharger Pressure Sensor signal или HAC Sensor signalДавление наддува находится в недопустимых пределах или обрыв или КЗ в цепи датчика компенсации высоты над уровнем моря (HAC)
    41Throttle Position Sensor signalОбрыв или КЗ в цепи «VTA» датчика положения дроссельной заслонки в течение 0.5 сек или дольше
    42Vehicle Speed Sensor signalОтсутствие сигнала скорости автомобиля («SPD») на ECU при оборотах двигателя между 2500 и 4500 в течение 8 сек или дольше
    43Starter signalОтсутствие сигнала стартера («STA») на ECU до тех пор, пока обороты двигателя не достигнут 800 об/мин в процессе запуска
    51Neutral Start Switch signalДроссельная заслонка закрыта не полностью (отсутствие сигнала «IDL» на ECU) или рычаг управления трансмиссией находится в положении, отличном от «P» или «N» (присутствие сигнала «NSW» на ECU) или включен кондиционер (присутствие сигнала «A/C» на ECU)
    52Knock Sensor signalОбрыв или КЗ в цепи датчика детонации
    53Knock Sensor signalОтказ подпрограммы обработки ситуации детонации (частичный отказ ECU)
    54Intercooler ECU signalНеисправность промежуточного охладителя воздуха (интеркулера)
    71EGR System malfunctionОбрыв или КЗ в цепи датчика температуры выхлопных газов (THG). Температура выхлопных газов ниже, чем температура поступающего в двигатель воздуха плюс 55C и автомобиль находится в движении в течение 25 сек или дольше
    72Fuel Cut Solenoid signalНеисправность соленоида отсечки топлива
    78Fuel Pump Control signalНеисправность бензонасоса

    Следует еще раз подчеркнуть, что данная таблица содержит перечень всех известных автору диагностических кодов системы TCCS, но это не означает, что все эти коды могут быть диагностированы компьютером системы TCCS конкретного двигателя. Например, компьютер TCCS двигателя 1G-EU способен диагностировать только коды 11, 12, 13, 14, 22, 23, 31, 32, 41, 42, 43, 51.

    Кроме этого, в описании кодов присутствуют ссылки на сигнальные цепи ECU с разного рода обозначениями (например, NSW, THA, IDL), расшифровка которых не дана.

    Схема расположения контактов диагностического разъема. Приведены схемы разъемов двух автомобилей.

    Источник http://autodata.ru/article/all/neposredstvennyy_vprysk_toyota_sistema_d_4/
    Источник Источник http://avto-elektro-shemy.ru/2011/06/sistema-upravleniya-dvigatelem-avtomobilej-toyota-corolla/
    Источник http://toyoinfo.ru/news/sistema_vpryska_tccs_avtomobilej_firmy_toyota/2010-03-07-275

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Похожее

    Смазочные материалы: Виды, особенности и их значение в технике

    Смазочные материалы: Виды, особенности и их значение в технике

    Смазочные материалы являются неотъемлемой частью множества промышленных и бытовых процессов, обеспечивая бесперебойную работу механизмов и продлевая срок их службы. На странице https://www.cstore.ru/catalog/brand/hyundai-xteer вы можете узнать более подробную информацию. В этой статье мы рассмотрим основные виды смазочных материалов, их особенности и значение для сохранения работоспособности различного оборудования и техники. Что такое смазочные материалы и зачем они […]

    Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

    Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

    Покупка квартиры от застройщика в Пензе становится всё более популярным выбором среди жителей города. Основные преимущества квартиры от застройщика и такого выбора заключаются в следующем: Новая недвижимость: Приобретая квартиру от застройщика, вы получаете абсолютно новое жилье, где никто до вас не жил. Это значит, что все коммуникации, электропроводка и сантехника будут в идеальном состоянии, а […]