Книга по общему устройству автомобилей (читать онлайн)
Книга по общему устройству автомобилей
ГЛАВА I. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
ГЛАВА II. ТРАНСМИССИЯ
ГЛАВА III. ХОДОВАЯ ЧАСТЬ
ГЛАВА IV. МЕХАНИЗМЫ УПРАВЛЕНИЯ
ГЛАВА V. ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ
ГЛАВА VI. КУЗОВ АВТОМОБИЛЯ
Вступление
Общие сведения о машинах
Легковой автомобиль состоит из:
— двигателя;
— трансмиссии;
— ходовой части;
— механизмов управления;
— электрооборудования;
— дополнительного оборудования;
— кузова.
Автомобиль может долго и упорно стоять на одном месте, опираясь «ногами» на дорогу, и поедет тогда, когда колеса начнут крутиться. А что заставляет их вращаться? Каким образом двигатель автомобиля передает крутящий момент на колеса?
Двигатель сжигает топливо и преобразует тепловую энергию сгорания во вращательное движение коленчатого вала, далее вращение передается через трансмиссию на ведущие колеса, которые являются элементом ходовой части автомобиля и машина поехала. Во время движения водитель пользуется рулем и тормозами (механизмы управления), включает лампочки и подает звуковые сигналы (электрооборудование) и сидит на водительском сиденье, пристегнутый ремнями безопасности.
Все вышеперечисленное объединяет кузов автомобиля, без которого агрегаты, механизмы и даже сиденье водителя лежали бы огромной кучей. Вот это и есть автомобиль. А теперь давайте, начнем вникать в назначение, принципы работы, детали и возможные неисправности вышеуказанных частей автомобиля.
Двигатель — это агрегат, в котором тепловая энергия сгорающего топлива преобразуется в механическую энергию (в виде вращения коленчатого вала).
Трансмиссия предназначена для передачи и изменения крутящего момента от двигателя к ведущим колесам. Она включает:
— сцепление;
— коробку передач;
— карданную передачу;
— главную передачу;
— дифференциал;
— полуоси.
Ходовая часть предназначена для перемещения авто по дороге с определенным уровнем комфорта без тряски и вибраций, и включает:
— переднюю и заднюю подвески колес;
— сами колеса.
Механизмы управления служат для изменения направления движения, остановки и стоянки автомобиля. К механизмам управления относятся:
— рулевое управление;
— тормозная система.
Электрооборудование предназначено для обеспечения электрическим током всех электрических приборов автомобиля, и состоит из:
— источников тока;
— потребителей тока.
Дополнительное оборудование обеспечивает комфортные и безопасные условия для водителя и пассажиров. Примером могут служить: отопитель салона, омыватель и очиститель ветрового стекла, электроподогрев стекол и многое другое.
Кузов является несущим элементом автомобиля, на котором крепятся двигатель, агрегаты трансмиссии, ходовой части, механизмы управления, а также размещаются водитель, пассажиры и груз.
Чтобы легче ориентироваться в специальной терминологии, которая будет присутствовать, давайте связывать ее с известными предметами. Для этой цели подойдет обычный велосипед. Функцию двигателя при езде на велосипеде выполняет сам велосипедист. Через цепь (трансмиссия) вращение от педалей передается на колесо (ходовая часть). Для выполнения поворотов и остановок служат руль и тормоза велосипеда (механизмы управления). Включая свет в лампах, используете электрооборудование. А рама велосипеда составят кузов.
Какие бывают автомобили
В зависимости от того, на какие колеса передается крутящий момент от двигателя, автомобили делятся на:
— заднеприводные,
— переднеприводные,
— полноприводные.
Заднеприводные
Это автомобили, у которых крутящий момент от двигателя передается на задние колеса. Пример — модели «Жигулей» от ВАЗ-2101 до ВАЗ-2107. Задние колеса у них являются ведущими, и именно они, отталкиваясь от покрытия дороги, двигают перед собой автомобиль. Передние колеса являются лишь направляющими (ведомыми) и служат для изменения направления движения. Можно сразу отметить, что заднеприводным автомобилям труднее сохранять прямолинейное движение на скользкой дороге, по сравнению с переднеприводными.
Для подтверждения попробуйте взять карандаш и, толкайте его сзади по столу, чтобы он двигался прямолинейно. Сделать это трудно, так как передняя часть карандаша будет постоянно отклоняться от своей траектории. Для компенсации этого отклонения придется маневрировать задней частью карандаша. А в примере с велосипедом — это и есть обычный велосипед, где вращение от педалей через цепь передается заднему колесу.
Переднеприводные
Автомобили, у которых крутящий момент от двигателя передается на передние колеса. Среди автомобилей ВАЗа переднеприводными являются модели, начиная от ВАЗ-2108. У этих автомобилей передние колеса являются как ведущими, так и направляющими. Задние колеса не выполняют никакой функции (кроме связи кузова с дорогой), они просто катятся по дороге. А передние колеса вовсю работают — получают энергию от двигателя, вращаются и «тянут» машину, направляя ее при этом по выбранной водителем траектории. Автомобили с передним приводом более устойчивы на дороге, чем заднеприводные.
Давайте возьмем карандаш. Только теперь будем его не толкать, а тащить вперед за кончик. Посмотрите, как легко стало перемещать его по плоскости стола в любом направлении, в том числе и прямо. В примере с велосипедом, выбрасываем неудобную цепь и крутим педали на переднем колесе, вращая именно его. Самые юные обладатели трехколесных транспортных средств используют именно передний привод.
Полноприводные
Автомобили, у которых передача крутящего момента от двигателя осуществляется одновременно на задние и передние колеса. Таковыми являются ВАЗ-2121 «Нива», «Шевроле-Нива», а также многочисленные «Джипы», которых все больше появляется на дорогах.
У «вездеходов» все четыре колеса получают крутящий момент от двигателя, одновременно «тянут» и «толкают» автомобиль, максимально повышая его ходовые качества. Этот тип привода идеален для сохранения управляемости на скользкой дороге.
Дополнительная информация
- Классификация автомобилей по классам
- Классификация автомобилей по типу кузова
- Из чего делают кузова машин и какие материалы применяют
- Аэродинамическое сопротивление авто что такое и на что влияет
- Для чего нужен бампер автомобиля и из какого пластика делают
- Виды автостекла: лобовое, боковые и заднего вида
- Активная и пассивная безопасность кузова авто — какая толщина кузова
ГЛАВА I. Двигатель внутреннего сгорания
В качестве силовой установки на автомобилях используется двигатель внутреннего сгорания. По виду применяемого топлива двигатели подразделяются на бензиновые, дизельные и газовые.
Бензиновые
Это двигатели, работающие на жидком топливе (бензине) с принудительным зажиганием. Перед подачей в цилиндры двигателя топливо перемешивается с воздухом в определенной пропорции с помощью карбюратора.
Дизельные
Двигатели с воспламенением от сжатия, работающие на жидком топливе (дизельном топливе). Подача топлива осуществляется форсункой, а смешивание с воздухом происходит внутри цилиндра.
Газовые
Двигатели с принудительным зажиганием, которые работают на метане или пропанобутановой смеси. Перед подачей в цилиндры двигателя газ смешивается с воздухом в смесителе. По принципу работы такие двигатели практически не отличаются от бензиновых. Поэтому в объеме этой книги не имеет смысла подробно останавливаться на рассмотрении газовых установок. Но, если вы переоборудовали свой автомобиль на газ, то советуем вам внимательно изучить прилагаемую к газовому оборудованию инструкцию.
При работе двигателя внутреннего сгорания из каждых десяти литров использованного топлива, к сожалению, только около двух литров идет на полезную работу, а все остальные — на «согревание» окружающей среды. Коэффициент полезного действия (КПД) ныне выпускаемых двигателей составляет всего около 20%. Но мир пока не придумал более совершенного теплового двигателя, который мог бы долго и надежно работать при более высоком КПД.
Бензиновые двигатели
К основным механизмам и системам бензинового двигателя относятся:
— кривошипно-шатунный механизм,
— газораспределительный механизм,
— система питания,
— система выпуска отработавших газов,
— система зажигания,
— система охлаждения,
— система смазки.
Для начала, возьмем простейший одноцилиндровый бензиновый двигатель и разберемся с принципом его работы. Рассмотрим протекающие в нем процессы и выясним откуда берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.
Основной частью одноцилиндрового двигателя является цилиндр с укрепленной на нем съемной головкой.
Если продолжить сравнение элементов автомобиля с известными в быту предметами, то цилиндр вместе с головкой будет похож на обыкновенный стакан, перевернутый вверх дном.
Внутри цилиндра помещен еще один «стакан», тоже вверх дном, — это поршень. На поршне в специальных канавках находятся поршневые кольца. Они скользят по зеркалу внутренней поверхности цилиндра и они же не дают возможности газам, образующимся в процессе работы двигателя, прорваться вниз. В то же время кольца препятствуют попаданию вверх масла, которым смазывается внутренняя поверхность цилиндра.
С помощью пальца и шатуна поршень соединен с кривошипом коленчатого вала, который вращается в подшипниках, установленных в картере двигателя. На конце коленчатого вала крепится массивный маховик.
Через впускной клапан в цилиндр поступает горючая смесь (смесь воздуха с бензином), а через выпускной клапан выходят отработанные газы. Клапаны открываются при набегании кулачков вращающегося распределительного вала на рычаги. При сбегании кулачков с рычагов клапаны надежно закрываются под воздействием мощных пружин. Распределительный вал с кулачками приводится во вращение от коленчатого вала двигателя.
В резьбовое отверстие в головке цилиндра ввернута свеча зажигания, которая электрической искрой, проскакивающей между ее электродами, воспламеняет рабочую смесь.
После знакомства с основными деталями одноцилиндрового двигателя вы начали догадываться, как он работает. Но давайте разберемся с тем, как происходит преобразование возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала. Этим в двигателе занимается шатунно-поршневая группа. Давайте посмотрим со стороны на действия велосипедиста.
Нажимая на педаль одной ногой, поворачиваем ось педалей на пол-оборота, затем помогает вторая нога, нажимая на вторую педаль и. колесо вращается, велосипед едет. Необходимо отметить, что работа двух ног — это пример двухцилиндрового двигателя. Чтобы не чувствовать обманутым, можете привязать одну ногу к педали и использовать для нашего эксперимента только ее.
При дальнейшем изучении работы ноги велосипедиста можно увидеть принцип работы шатунно-поршневой группы двигателя. Роль шатуна выполняет голень ноги, поршнем с верхней головкой шатуна является колено, ну а нижняя головка шатуна на кривошипе — это ступня на педали. Колено велосипедиста движется только вверх-вниз (как поршень), а ступня с педалью уже по окружности (как кривошип коленчатого вала). Это и есть преобразование возвратно-поступательного движения во вращательное.
В двигателе взаимодействие деталей шатунно-поршневой группы точно такое же, как и в рассмотренном нами примере с ногой велосипедиста. На рисунке показаны некоторые параметры цилиндра и поршня, которыми характеризуется двигатель (объемы цилиндра и ход поршня).
Крайние положения поршня, когда он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней «мертвой» точкой (ВМТ) и нижней «мертвой» точкой (НМТ). При езде на велосипеде колено вашей ноги, так же как и поршень, периодически будет находиться в крайнем верхнем и в крайнем нижнем положении.
Ходом поршня (S) называется путь, пройденный от одной «мертвой» точки до другой.
Объемом камеры сгорания (Vc) называется объем, расположенный над поршнем, находящимся в ВМТ.
Рабочим объемом цилиндра (Vp) называется объем, освобождаемый поршнем при перемещении от ВМТ к НМТ.
Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров. Измеряется рабочий объем в литрах.
Пока рассматриваем только одноцилиндровый двигатель, а вообще двигатели современных легковых автомобилей, как правило, имеют 2, 3, 4, 5, 6, 8 и даже 12 цилиндров. Чем больше суммарный рабочий объем, тем более мощным будет двигатель. Измеряется мощность в киловаттах или в лошадиных силах (кВт или л.с.).
Рабочий цикл четырехтактного карбюраторного двигателя.
Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают. Рабочий цикл — это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя. Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:
— четырехтактные, в которых рабочий цикл совершается за четыре хода поршня,
— двухтактные, в которых рабочий цикл совершается за два хода поршня.
На легковых автомобилях применяются четырехтактные двигатели, а на мотоциклах и моторных лодках — двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.
Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
— впуск горючей смеси,
— сжатие рабочей смеси,
— рабочий ход,
— выпуск отработавших газов.
Первый такт — впуск горючей смеси . Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15 считается оптимальным для обеспечения нормального процесса сгорания.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь. Впуск смеси продолжается, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.
Второй такт — сжатие рабочей смеси . При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается. Из школьной физики известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9-10 кг/см, а температура 300-400°С. В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием — «степень сжатия» (например 8,5). А что это такое?
Степень сжатия показывает, во сколько раз полный объем цилиндра больше объема камеры сгорания. У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8-11 раз. В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.
Третий такт — рабочий ход . Тут происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал. Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход — давить на подвижный поршень.
Под действием давления, достигающего величины 50 кг/см, поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент. При такте рабочего хода температура в цилиндре достигает более 2000 градусов. Коленчатый вал при рабочем ходе делает очередные пол-оборота.
Четвертый такт — выпуск отработавших газов . При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
Вот почему слышен сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя — при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота. После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск — сжатие — рабочий ход — выпуск. и так далее.
Теперь, кто обратил внимание, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта — такта рабочего хода! Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.
Маховик — это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.
Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии. Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик тоже помогает.
В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией руки (рабочий ход) и радостно наблюдали, как долго он вращается. Точно так же и массивный маховик двигателя — раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.
Дизельные двигатели
Главной особенностью работы дизельного двигателя то, что топливо подается форсункой или насосом-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей значительно больше, чем у бензиновых.
Поскольку давление и температура в цилиндре дизельного двигателя очень велики, то происходит самовоспламенение топлива. Это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.
Рабочий цикл четырехтактного дизельного двигателя
Первый такт — впуск, служит для наполнения цилиндра двигателя только воздухом.
При движении поршня от верхней мертвой точки к нижней мертвой точке происходит всасывание воздуха через открытый впускной клапан.
Второй такт — сжатие, необходим для подготовки к самовоспламенению дизельного топлива. При движении к верхней мертвой точке поршень сжимает воздух в 18-22 раза (у бензиновых в 8-11 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см, а температура поднимается выше 500 градусов.
Третий такт — рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу. В конце такта сжатия в камеру сгорания через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха. При сгорании дизельного топлива расширяющиеся газы создают усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал. Во время рабочего хода давление в цилиндре достигает 100 кг/см?, а температура превышает 2000°С.
Четвертый такт — выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов. Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы. При последующем движении вниз поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.
В дизельном двигателе нагрузки на все механизмы и детали значительно больше, чем в бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости. В то же время, дизель имеет и неоспоримые преимущества — меньший расход топлива, чем у его бензинового, а также отсутствие системы зажигания, что уменьшает количество возможных неисправностей при эксплуатации.
Дополнительная информация
- Дизельные двигатели автомобиля — устройство и как работают
- Двигатель авто с турбонаддувом — плюсы и минусы
Кривошипно-шатунный механизм (КШМ)
Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.
На большинстве легковых автомобилей устанавливаются четырехцилиндровые двигатели. Конечно, существуют варианты и с другим количеством цилиндров (от двух до двенадцати), но в объеме книги ограничимся знакомством именно с четырехцилиндровым двигателем, т.к. он является самым распространенным.
Кривошипно-шатунный механизм состоит из:
— блока цилиндров с картером;
— головки блока цилиндров;
— поддона картера двигателя;
— поршней с кольцами и пальцами;
— шатунов;
— коленчатого вала;
— маховика.
Блок цилиндров объединяет не только цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Блок является основой двигателя, в которой имеется множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров. Нижняя часть блока называется картером.
Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. В головке, как и в блоке цилиндров, имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и при работе двигателя составляет с блоком единое целое.
Устройство и взаимодействие основных деталей кривошипно-шатунного механизма (шатунно-поршневой группы) рассмотрели ранее, при изучении работы ног велосипедиста и рабочего цикла двигателя.
На холостом ходу коленчатый вал двигателя вращается со скоростью приблизительно 800-900 оборотов в минуту (13-15 об/сек). На средней и большой скорости движения автомобиля число оборотов коленчатого вала в минуту составляет от 2000 до 4000. А в ходе автомобильных соревнований, у специально подготовленных автомобилей, двигатель «раскручивается» до 12000 об/мин (200 оборотов в секунду) и даже больше.
А что поршни? Они движутся в цилиндре с огромной скоростью! За один оборот коленчатого вала каждый поршень успевает подняться вверх, «развернуться» и опуститься вниз (или наоборот — сначала вниз, потом вверх). При этом путь от одной мертвой точки до другой поршни «пролетают» за сотые доли секунды! А если вспомнить еще и об огромных температурах и давлении в цилиндрах в это время! Вот в таких непростых условиях работают детали двигателя вашего автомобиля.
Разобрались с сложным и уникальным процессом, происходящим внутри двигателя с одним цилиндром. Многоцилиндровый двигатель принципиально ничем не отличается от простейшего одноцилиндрового. Но, когда цилиндров много, представьте, в каких условиях работает двигатель (температуры, давление, трение), при этом работает безотказно и продолжительное время, ничего не требуя взамен, кроме «кормления» бензином и периодического обслуживания.
Газораспределительный механизм (ГРМ)
Газораспределительный механизм состоит из:
— распределительного вала;
— рычагов или толкателей;
— впускных и выпускных клапанов с пружинами;
— впускных и выпускных каналов.
Распределительный вал располагается чаще всего в верхней части головки блока цилиндров. Составной частью вала являются кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя. Иными словами, над каждым клапаном расположен свой персональный кулачок. Именно эти кулачки при вращении распределительного вала обеспечивают своевременное, согласованное с движением поршней в цилиндрах, открытие и закрытие клапанов.
Распределительный вал приводится во вращение от коленчатого вала двигателя с помощью шестерен, цепной передачи или зубчатого ремня. Натяжение цепи привода регулируется специальным натяжителем, а зубчатого ремня — натяжным роликом.
А что дальше, вы знаете — поршень, через открытый впускной или выпускной клапан, соответственно засасывает горючую смесь или выталкивает отработавшие газы.
Топливный бак
Топливный бак — это емкость для хранения топлива. Обычно он размещается в задней, более безопасной при аварии части автомобиля. От топливного бака к карбюратору бензин поступает по топливопроводам, которые тянутся вдоль всего автомобиля, как правило, под днищем кузова.
Первая ступень очистки топлива — это сетка на топливозаборнике внутри бака. Она не дает возможности содержащимся в бензине крупным примесям и воде попасть в систему питания двигателя.
Количество бензина в баке водитель может контролировать по показаниям указателя уровня топлива, расположенного на щитке приборов. Емкость для среднестатистического легкового автомобиля составляет 40-50 литров. Когда уровень бензина в баке уменьшается до 5-9 литров, на щитке приборов загорается соответствующая желтая (или красная) лампочка — лампа резерва топлива. Это сигнал водителю о том, что пора подумать о заправке.
Топливный фильтр и насос
Топливный фильтр (как правило, устанавливается самостоятельно) — второй этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса). Обычно применяется неразборный фильтр, при загрязнении которого требуется его замена.
Топливный насос — предназначен для принудительной подачи топлива из бака в карбюратор. Он состоит из: корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной третьей ступени очистки бензина.
Топливный насос приводится в действие от валика привода масляного насоса или от распределительного вала двигателя. При вращении вышеуказанных валов, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над диафрагмой создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой.
При сбегании эксцентрика со штока диафрагма освобождается от воздействия рычага и за счет жесткости пружины поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой поступает к карбюратору. При очередном набегании эксцентрика на шток процесс повторяется.
Обратите внимание, что подача бензина в карбюратор происходит лишь за счет усилия пружины, которая поднимает диафрагму. Это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. Пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии «вытолкнуть» из насоса очередную порцию бензина.
Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. Если предположить, что бак находится на крыше автомобиля, то потребность в насосе отпадает. В этом случае бензин будет поступать в карбюратор самотеком, что и используют некоторые водители в «безвыходной» ситуации при отказе насоса в работе. Закрепив канистру с бензином в положении, явно выше карбюратора и соединив их между собой, можно продолжить поездку.
Воздушный фильтр
Воздушный фильтр — необходим для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора.
При загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином. Чем это грозит кроме лишних финансовых затрат, вы узнаете через несколько страниц.
Карбюратор и его устройство
Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режима работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество смеси.
Карбюратор, это одно из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме.
Простейший карбюратор состоит из:
— поплавковой камеры;
— поплавка с игольчатым запорным клапаном;
— распылителя;
— смесительной камеры;
— диффузора;
— воздушной и дроссельной заслонок;
— топливных и воздушных каналов с жиклерами.
Карбюратор смешивает бензин с воздухом в строго определенной пропорции. Горючая смесь называется нормальной, если на одну часть бензина приходится пятнадцать частей воздуха (1:15). В зависимости от различных факторов качество смеси (соотношение бензина и воздуха) может меняться. Если воздуха будет больше, то смесь становится обедненной или бедной. Если воздуха меньше, то смесь превращается в обогащенную или богатую.
Обедненная и бедная смеси — это «голодная» пища для двигателя, в них топлива меньше нормы. Обогащенная и богатая смеси — слишком калорийная пища, так как топлива в них больше, чем надо. Вышеприведенной терминологии соответствует известные слова: «недоедание» и «голод» или «переедание» и «обжорство». Если подумать о своем здоровье, то из четырех предложенных вариантов для постоянного рациона лучше выбрать легкое «недоедание», чем три другие «убивающие» диеты.
Дополнительная информация
- Теория работы карбюратора — основные детали
- Чистка и обслуживание карбюратора — как сделать своими руками
- Проблемы в работе карбюратора — как их решить самостоятельно
Системы питания двигателя с впрыском топлива
Карбюраторы уходят в историю. Основная причина — они не могут удовлетворять современным требованиям по расходу топлива и содержанию вредных веществ в отработавших газах. Применение систем впрыска топлива позволяет решить эти проблемы.
Система центрального (одноточечного) впрыска топлива является родоначальницей всех систем впрыска.
При центральном впрыске порция топлива через электромагнитную форсунку (инжектор) подается в зону дроссельной заслонки во впускном коллекторе, где смешивается с потоком воздуха. Получается горючая смесь, которая затем поступает в цилиндры двигателя.
Многоточечная система впрыска (распределенный впрыск) — это следующий этап в эволюции систем впрыска.
При многоточечном впрыске топливо подается в зону открытого впускного клапана отдельной форсункой для каждого цилиндра двигателя. Такие конструкции более сложны, но получили наибольшее применение, так как обеспечивают лучшие показатели по экономичности двигателя и токсичности отработавших газов.
Устройство системы впрыска топлива, а также схема расположения ее основных узлов показаны нижн.
Топливный насос с электрическим приводом находится внутри топливного бака либо закреплен на кузове. Он подает топливо под небольшим давлением по бензопроводам к форсункам, расположенным в зоне впускных клапанов. Топливо проходит две ступени очистки. Избыток бензина возвращается через обратный трубопровод в топливный бак.
Регулятор давления топлива поддерживает определенное давление топлива в трубопроводе (топливной рампе) перед форсункой.
Датчики преобразуют измеряемые параметры в электрические сигналы, которые передаются электронному блоку управления. В системе впрыска применяются несколько датчиков, определяющих различные параметры в конкретный момент времени:
— датчик массового расхода воздуха, устанавливается после воздушного фильтра;
— датчик температуры воздуха;
— датчик абсолютного давления воздуха;
— датчик положения дроссельной заслонки;
— датчик угла поворота и частоты вращения коленчатого вала;
— датчик концентрации кислорода (лямбда-зонд), устанавливается в выпускной системе и следит за содержанием кислорода в отработавших газах;
— датчик положения распределительного вала;
— датчик температуры охлаждающей жидкости;
— датчик детонации и др.
Электронный блок управления (ЭБУ) получает информацию от всех датчиков об измеряемых параметрах, анализирует их и выдает команду форсункам на впрыск определенной порции топлива в строго обозначенное время.
Электромагнитная форсунка относится к исполнительному механизму системы. При получении управляющего сигнала от ЭБУ игла форсунки поднимается для распыления порции топлива.
Работа системы впрыска топлива в том, чтобы на любом режиме работы двигателя обеспечить оптимальный состав горючей смеси в цилиндрах. Это достигается тем, что ЭБУ, основываясь на постоянно получаемой от датчиков информации о различных параметрах, управляет моментом и продолжительностью открытия иглы распылителя форсунки. Изменение любого параметра (температуры воздуха и охлаждающей жидкости, оборотов коленчатого вала, состава выхлопных газов и т.п.) ЭБУ мгновенно пересчитывает и выдает сигнал на форсунки для формирования иной порции топлива и времени ее подачи.
Стехиометрический состав горючей смеси при соотношении топлива к воздуху 1:14,7 (по массе) обеспечивает идеальный теоретический цикл сгорания. Иными словами для полного сгорания 1 кг топлива требуется 14,7 кг воздуха (в объемных единицах: 1 литр топлива полностью сгорает в 9500 литрах воздуха).
Дополнительная информация
- Что такое система впрыска топлива автомобиля
- Лямбда зонд в машине — что это такое и как работает
- «Мозги» двигателя авто — электронный блок управления
- Как работает система впрыска автомобиля с обратной связью
- Развитие системы впрыска машины: от Евро-1 до Евро-6c
- Что такое ДМРВ в авто — датчик массового расхода воздуха
Система выпуска отработавших газов
Система выпуска предназначена для отвода отработавших газов от цилиндров двигателя, а также для уменьшения шума при выбросе их в атмосферу. Она состоит из:
— выпускного клапана;
— выпускного трубопровода; — дополнительного глушителя (резонатора);
— основного глушителя;
— соединительных хомутов.
«Обработка» выхлопных газов перед выпуском их в атмосферу происходит в дополнительном и основном глушителях. Внутри глушителей имеются многочисленные отверстия и камеры, расположенные в шахматном порядке. При прохождении газов по такому лабиринту, они теряют свою скорость и, как следствие этого, шумность их уменьшается. А дальше, «успокоенные» газы выходят и растворяются в воздухе, которым дышим.
Каталитический нейтрализатор отработавших газов
В системе выпуска современных автомобилей устанавливается каталитический нейтрализатор отработавших газов. Назначение нейтрализатора — уменьшить концентрацию вредных веществ, которые содержатся в продуктах сгорания. Самые вредные из них три — углеводороды, окись углерода и окислы азота. Каждая составляющая должна нейтрализоваться отдельно, поэтому появилось название трехфункциональный (трехкомпонентный) каталитический нейтрализатор.
Нейтрализатор размещается как можно ближе к двигателю в выхлопной системе.
Внутри термостойкого корпуса нейтрализатора находится носитель из керамической основы, на которую наносится активный каталитический материал, состоящий из тончайшего слоя благородных металлов. В носителе имеется множество продольных каналов, проходя по которым отработавшие газы подвергаются нейтрализации, в результате чего токсичность выхлопа снижается примерно на 90%. После нейтрализатора основными компонентами выхлопных газов становятся относительно безопасная двуокись углерода, а также совсем безвредные азот и водяной пар.
Каталитический нейтрализатор может успешно работать при соотношении топлива с воздухом близким к стехиометрическому. Для измерения количества кислорода в выпускной системе устанавливается датчик концентрации кислорода (лямбда-зонд). Датчик отслеживает концентрацию кислорода в отработавших газах и передает информацию в электронный блок управления двигателем (ЭБУ), который дает команду на изменение количества впрыскиваемого в цилиндры двигателя топлива.
Датчик концентрации кислорода не работает только во время прогрева двигателя, при этом ЭБУ определяет состав смеси, впрыскиваемой в цилиндр двигателя, без участия этого датчика.
Система зажигания
Когда изучали рабочий цикл двигателя, было отмечено, что в самом конце такта сжатия рабочую смесь необходимо поджечь. Это означает, что между электродами свечи зажигания в этот момент должна проскочить высоковольтная искра.
Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель.
На автомобилях прежних лет выпуска устанавливалась контактная или бесконтактная система зажигания. В современном автомобиле с системой впрыска топлива система зажигания является частью комплексной электронной системы управления двигателем.
Контактная система зажигания
Источники электрического тока вырабатывают ток низкого напряжения. Они «выдают» в бортовую электрическую сеть автомобиля 12-14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18-20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи — низкого и высокого напряжения. Контактная система зажигания состоит из:
— катушки зажигания;
— прерывателя тока низкого напряжения;
— распределителя тока высокого напряжения;
— центробежного регулятора опережения зажигания;
— вакуумного регулятора опережения зажигания;
— свечей зажигания;
— проводов низкого и высокого напряжения;
— включателя зажигания.
Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.
Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).
За счет разницы в количестве витков обмоток катушки, из 12-ти вольт получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания. Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно. «Убивает не напряжение, а ток» — известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.
В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько «неприятно», но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на «массе», а другая на тех самых 20000 В.
Крышка распределителя и распределитель тока высокого напряжения предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя. Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности. Таким образом, устанавливается «порядок работы цилиндров», который выражается рядом цифр.
Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1-3-4-2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий «взрыв» произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.
Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4-6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.
Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001-0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.
Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.
В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4-6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.
Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.
Свеча зажигания необходима для образования искрового разряда и поджигания рабочей смеси в камере сгорания. Как вы помните, устанавливается свеча зажигания в головке цилиндра двигателя.
Когда импульс тока высокого напряжения от распределителя зажигания попадает на свечу, между ее электродами проскакивает искра. Именно эта «искорка» и воспламеняет рабочую смесь, обеспечивая тем самым нормальное прохождение рабочего цикла двигателя. Свеча зажигания маленькая, но очень важная деталь вашего двигателя.
В обычной жизни вы можете посмотреть на принцип работы свечи зажигания, поиграв с пьезо- или электрозажигалкой, которая используется на кухне. Искра, проскакивающая между электродами зажигалки, воспламеняет газ и обеспечивает рабочий «кухонный» процесс.
Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от него на свечи зажигания.
Бесконтактная система зажигания
Преимущество бесконтактной системы зажигания в возможности увеличения подаваемого напряжения на электроды свечи (увеличение «мощности» искры). Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах, что имеет особое значение для суровых зимних месяцев. Немаловажным фактом является то, что при использовании бесконтактной системы зажигания двигатель становится более экономичным.
У бесконтактной системы, как и у контактной, есть цепи низкого и высокого напряжения. Цепи высокого напряжения контактной и бесконтактной систем зажигания практически ничем не отличаются, но цепи низкого напряжения у них различны. В бесконтактной системе используются электронные устройства — коммутатор и датчик-распределитель (датчик Холла).
Бесконтактная система зажигания включает следующие узлы:
— катушку зажигания;
— датчик-распределитель;
— коммутатор;
— свечи зажигания;
— провода высокого и низкого напряжения;
— выключатель зажигания.
В такой системе зажигания отсутствуют контакты прерывателя, а значит, нечему подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого напряжения в те самые «страшно большие» вольты.
Система зажигания с электронным управлением
На современных автомобилях с электронным управлением двигателем система зажигания состоит из:
— электронного блока управления (ЭБУ);
— датчиков (угла поворота коленчатого вала, положения дроссельной заслонки, детонации, температуры охлаждающей жидкости);
— катушки зажигания (общей или по одной катушке на каждый цилиндр);
— распределителя тока высокого напряжения (при общей катушке зажигания);
— высоковольтных проводов;
— свечей зажигания.
При работе двигателя информация от датчиков поступает в электронный блок управления (ЭБУ). В результате обработки полученной информации ЭБУ устанавливает оптимальный момент зажигания, необходимый для получения максимальной экономичности работы двигателя в каждый отдельный момент времени, и подает импульсный сигнал катушке (катушкам) зажигания.
Электронная система зажигания не требует регулировок и очень надежна в течение всего срока службы.
Электронная система управления
Принцип работы электронной системы управления двигателем в том, что электронный блок управления (ЭБУ) получает непрерывную информацию о всех параметрах работы систем и механизмов двигателя, а также об окружающей среде. Мгновенно оценивая информацию, ЭБУ выдает команду на впрыск определенной порции топлива и подачу высоковольтного разряда на электроды свечи зажигания в строго определенный момент времени.
Изменение температуры двигателя и воздуха, оборотов коленчатого вала и давления воздуха мгновенно определяется и передается ЭБУ, который изменяет команду «о дозе топлива и угле опережения зажигания». Неважно, что температура изменилась на один градус, а число оборотов коленчатого вала уменьшилось на один или два. Блок управления «посчитает» все точно и изменит свою команду.
Если электронный блок не получил данные от какого-то из датчиков, он возьмет «непослушную железку на карандаш», запишет сбой в работе и «наябедничает» хозяину или мастеру в автосервисе. Система контролирует свою работу, диагностирует неисправности, записывает их. Она может даже отключить неработающий контур, задействовав резервный. И это не фантастика, а предусмотренный режим работы системы.
Система охлаждения
Система охлаждения предназначена для поддержания нормального теплового режима двигателя. При работе двигателя температура в цилиндрах двигателя периодически поднимается выше 2000 градусов, а средняя температура составляет 800-900°С! Если не отводить тепло от двигателя, то через несколько десятков секунд после запуска он станет уже не холодным, а безнадежно горячим. Следующий раз сможете запустить свой холодный двигатель только после его капитального ремонта.
Система охлаждения необходима для отвода тепла от механизмов и деталей двигателя, но это только половина ее предназначения, правда, большая половина. Для обеспечения нормального рабочего процесса важно также ускорять прогрев холодного двигателя. И это вторая часть работы системы охлаждения. На автомобилях применяется жидкостная система охлаждения, закрытого типа, с принудительной циркуляцией жидкости и расширительным бачком.
Система охлаждения состоит из:
— рубашки охлаждения блока и головки блока цилиндров,
— центробежного насоса,
— термостата,
— радиатора срасширительным бачком,
— вентилятора,
— соединительных патрубков и шлангов.
На рисунке можете различить два круга циркуляции охлаждающей жидкости.
Малый круг циркуляции (красные стрелки) служит для скорейшего прогрева холодного двигателя. А когда к красным стрелкам присоединяются синие, то уже нагревшаяся жидкость начинает циркулировать по большому кругу, охлаждаясь в радиаторе. Руководит этим процессом автоматическое устройство — термостат.
Для контроля за работой системы охлаждения, на щитке приборов имеется указатель температуры охлаждающей жидкости. Нормальная температура охлаждающей жидкости при работе двигателя должна быть в пределах 80-90°С.
Рубашка охлаждения двигателя состоит из множества каналов в блоке и головке блока цилиндров, по которым циркулирует охлаждающая жидкость.
Насос центробежного типа заставляет жидкость перемещаться по рубашке охлаждения двигателя и всей системе. Насос приводится в действие ременной передачей от шкива коленчатого вала двигателя. Натяжение ремня регулируется отклонением корпуса генератора или натяжным роликом привода распределительного вала двигателя.
Термостат предназначен для поддержания постоянного оптимального теплового режима двигателя. При пуске холодного двигателя термостат закрыт, и вся жидкость циркулирует только по малому кругу для скорейшего ее прогрева. Когда температура в системе охлаждения поднимается выше 80-85°С, термостат автоматически открывается и часть жидкости поступает в радиатор для охлаждения. При больших температурах термостат открывается полностью, и теперь уже вся горячая жидкость направляется по большому кругу для ее активного охлаждения.
Радиатор служит для охлаждения проходящей через него жидкости за счет потока воздуха, который создается при движении автомобиля или с помощью вентилятора. В радиаторе имеется множество трубок и перегородок, образующих большую площадь поверхности охлаждения.
Расширительный бачок необходим для компенсации изменения объема и давления охлаждающей жидкости при ее нагреве и охлаждении.
Вентилятор предназначен для принудительного увеличения потока воздуха, проходящего через радиатор движущегося автомобиля, а также для создания потока воздуха в случае, когда автомобиль стоит без движения с работающим двигателем.
Применяются два типа вентиляторов: постоянно включенный, с ременным приводом от шкива коленчатого вала и электровентилятор, который включается автоматически, когда температура охлаждающей жидкости достигает приблизительно 100°С.
Патрубки и шланги служат для соединения рубашки охлаждения с термостатом, насосом, радиатором и расширительным бачком.
В систему охлаждения двигателя включен также отопитель салона. Горячая охлаждающая жидкость проходит через радиатор отопителя и нагревает воздух, подающийся в салон автомобиля.
Температура воздуха в салоне регулируется специальным краном, с помощью которого водитель увеличивает или уменьшает поток жидкости, проходящей через радиатор отопителя.
Система смазки
Система смазки предназначена для подачи масла к трущимся деталям и частичного их охлаждения, а также для удаления продуктов износа.
Система смазки состоит из:
— поддона картера;
— масляного насоса с маслоприемником;
— масляного фильтра;
— каналов для подачи масла под давлением, просверленных в блоке цилиндров, головке блока и в других деталях двигателя.
Поддон картера двигателя является резервуаром для хранения масла. Когда заливаете масло через маслозаливную горловину, оно проходит по пустотам внутри двигателя и сливается в поддон картера. Уровень имеющегося в поддоне масла можно измерить масляным щупом через отверстие в блоке цилиндров.
Масляный насос под давлением подает масло (через фильтр и каналы) к трущимся деталям кривошипно-шатунного и газораспределительного механизмов. Насос состоит из двух шестерен и приводится в действие от коленчатого вала двигателя. При вращении шестеренок зубья захватывают масло и нагнетают его в главную масляную магистраль.
Редукционный клапан служит для ограничения давления в системе масляных каналов двигателя. При избыточном давлении пружина сжимается, и часть масла поступает обратно в поддон картера двигателя.
Масляный фильтр служит для очистки проходящего через него масла от механических примесей. Он устанавливается сразу после насоса и пропускает через себя все масло, которое поступает в масляную магистраль. Чаще всего фильтр имеет неразборную конструкцию и подлежит замене одновременно с плановой сменой масла в двигателе.
Вентиляция картера двигателя обеспечивает отсос из картера и отвод во впускной трубопровод паров бензина и выхлопных газов, которые попадают в нижнюю часть двигателя. Во время тактов сжатия и рабочего хода эти пары и газы частично прорываются по стенкам цилиндров в картер двигателя, разжижают масло и очень агрессивны по отношению к деталям кривошипно-шатунного механизма.
Вентиляция картера осуществляется принудительно за счет разрежения, которое возникает в воздушной горловине карбюратора при работе двигателя.
Корпус воздушного фильтра соединяется с картером двигателя с помощью шланга, по которому картерные газы направляются сначала в карбюратор, а затем в цилиндры на дожигание.
В двигателях внутреннего сгорания применяется комбинированная система смазки — под давлением и разбрызгиванием. К наиболее нагруженным трущимся поверхностям масло подается под давлением, а остальные детали механизмов двигателя смазываются брызгами масла и масляным туманом.
К подшипникам коленчатого и распределительного валов масло подходит по каналам системы под давлением. Сделав свое дело, то есть смазав, немного охладив и забрав с собой продукты износа, масло стекает обратно в поддон картера двигателя.
При вращении коленчатого вала из его шатунных и коренных подшипников масляные брызги попадают на зеркало цилиндров, поршни и поршневые пальцы. Все движущиеся детали кривошипно-шатунного и газораспределительного механизмов как бы «купаются» в масле. Этим достигается высокая износостойкость пар трения.
ГЛАВА II. ТРАНСМИССИЯ
Агрегаты трансмиссии заднеприводного автомобиля распределены вдоль всего кузова и передают крутящий момент от двигателя на задние колеса.
Трансмиссия заднеприводного автомобиля включает:
— сцепление,
— коробку передач,
— карданную передачу,
— главную передачу,
— дифференциал,
— полуоси.
В автомобиле с приводом на передние колеса крутящий момент не уходит так далеко от двигателя, как в автомобиле с задним приводом. Все агрегаты трансмиссии переднеприводного автомобиля сконцентрированы под капотом машины и объединены в один большой агрегат. Механизм сцепления «зажат» в кожухе между двумя «монстрами» — двигателем и коробкой передач, которая, в свою очередь, содержит в себе еще и главную передачу с дифференциалом. Поэтому валы привода передних колес выходят непосредственно из картера коробки передач.
Трансмиссия переднеприводного автомобиля включает:
— сцепление,
— коробку передач,
— главную передачу,
— дифференциал,
— валы привода передних колес.
Сцепление
Сцепление является агрегатом трансмиссии и предназначено для передачи крутящего момента от маховика коленчатого вала двигателя к первичному валу коробки передач. Сцепление позволяет водителю кратковременно прерывать передачу крутящего момента, как бы отделять двигатель от трансмиссии, а затем плавно их соединять. Сцепление состоит из привода сцепления и механизма сцепления.
Привод выключения сцепления
Дальнейшее изучение невозможно без понимания термина «привод». В обычной жизни человек самостоятельно, посредством ног и рук, перемещается по улице и квартире, прилагает усилия и передает их окружающим предметам. Что-то открывает и закрывает, включает и выключает, и все это без применения трубопроводов и рычагов. И совсем другое дело в автомобиле. Когда надо передать усилие от водителя к некому механизму или от одного агрегата к другому, то без «посредников» не обойтись. Ведь в машине все надежно закреплено в различных местах кузова, и водитель не имеет возможности на ходу выйти из-за руля, чтобы, допустим, руками приоткрыть заслонку карбюратора. Поэтому существует привод механизмов.
Представьте ситуацию, когда необходимо постоянно что-то закрывать и открывать, а сами передвигаться не можете. Если трудно это представить, тогда для начала привяжите себя покрепче к дивану. А теперь попробуйте открыть входную дверь! Для передачи усилия на расстоянии по «открыванию» и «закрыванию» двери придется применить веревку или палку или дистанционное управление. Пусть это будет длинная палка, привязанная веревками одним концом к вашей руке, а другим к ручке двери. А дальше тяните и толкайте, впуская по одному толпу приглашенных друзей. В этом случае палка с веревками и будут являться тем «приводом», который передает усилие на расстоянии.
В автомобиле практически каждый механизм имеет свой привод, посредством которого он приводится в действие. Привод состоит из большого количества отдельных узлов и деталей, может быть механическим, гидравлическим или иным. Привод выключения сцепления (гидравлический) состоит из:
— педали;
— главного цилиндра;
— рабочего цилиндра;
— вилки выключения сцепления;
— выжимного подшипника;
— трубопроводов.
При нажатии на педаль сцепления усилие ноги водителя через шток и поршень передается жидкости, которая, в свою очередь, передает давление от поршня главного цилиндра на поршень рабочего цилиндра. Далее шток рабочего цилиндра перемещает вилку выключения сцепления и нажимной подшипник, который передает усилие на механизм сцепления.
Когда водитель отпускает педаль, под воздействием возвратных пружин все детали привода занимают исходные позиции.
На переднеприводных автомобилях ВАЗ используется механический привод, где педаль сцепления связана с вилкой выключения с помощью троса в оболочке.
Механизм сцепления
Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем вновь плавно их соединять. Элементы механизма заключены в картер, сцепления который крепится к картеру двигателя.
Механизм сцепления состоит из:
— картера и кожуха,
— ведущего диска (которым является маховик коленчатого вала двигателя),
— нажимного диска с пружинами,
— ведомого диска со специальными износостойкими накладками.
Ведомый диск, связанный с первичным валом коробки передач, постоянно прижат к маховику нажимным диском под воздействием сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе, как единое целое, вращается при работе двигателя. Но это только тогда, когда водитель не трогает педаль сцепления, независимо от того движется его автомобиль или стоит на месте.
Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.
Для начала движения машины необходимо прижать ведомый диск, связанный с ведущими колесами (через первичный вал коробки передач и другие составляющие трансмиссии) к вращающемуся маховику, то есть включить сцепление. И это сложная задача, так как угловая скорость вращения маховика составляет 20-25 оборотов в секунду, а скорость вращения ведущих колес — ноль.
Как решить эту задачу? Представьте, что вы опоздали на поезд, который уже начал движение. При грамотных действиях сначала его догоняете, двигаясь параллельно, затем хватаетесь за поручень, и когда ваша скорость уравняется со скоростью поезда, то можно запрыгивать в вагон. Но может присниться кошмарный сон, в котором вы, двигаясь наперерез поезду, пытаетесь сразу попасть в движущийся вагон. Конечно промахиваетесь и не попадаете в больницу только потому, что вовремя просыпаетесь в холодном поту. Зато после этого начинаете всегда правильно отпускать педаль сцепления только в три этапа.
На первом этапе работы по включению сцепления — приотпускаем педаль, то есть даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения (догнали поезд). За счет сил трения диск, проскальзывая некоторое время относительно маховика, тоже начнет вращаться, а ваш автомобиль — потихоньку ползти.
На втором этапе — удерживаем ведомый диск от какого-либо перемещения в средней позиции в течение двух-трех секунд для того, чтобы скорость вращения маховика и диска уравнялись (ухватились за поручни вагона). Машина при этом немного увеличивает скорость движения.
На третьем этапе — маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания и с одинаковой скоростью, стопроцентно передавая крутящий момент к коробке передач и далее на ведущие колеса автомобиля (запрыгнули в вагон). Это соответствует состоянию механизма сцепления включено, автомобиль движется. Теперь остается только полностью отпустить педаль сцепления и убрать с нее ногу.
Если в начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет. В худшем варианте что-нибудь еще и сломается, так как в этот момент возникает сильная ударная волна, которая многократно увеличивает нагрузки на все детали двигателя и агрегаты трансмиссии.
Действия водителя по выключению и включению сцепления в течение поездки (при стартах с места, остановках и переключениях передач) повторяются многократно, особенно в условиях городского движения. Если вы освоите работу педалью сцепления в три этапа, то позже это войдет в незаметную полезную привычку, которая обеспечит плавность хода автомобиля, комфорт пассажирам и увеличение ресурса не только деталей сцепления, но и всего автомобиля в целом.
Коробка передач
Коробка передач предназначена для изменения по величине и направлению крутящего момента и передачи его от двигателя к ведущим колесам. Также она обеспечивает длительное разобщение двигателя и ведущих колес, причем на неограниченный срок и без усилий со стороны водителя (по сравнению со сцеплением).
Коробка передач состоит из:
— картера;
— первичного, вторичного и промежуточного валов с шестернями;
— дополнительного вала и шестерни заднего хода;
— синхронизаторов;
— механизма переключения передач с замковым и блокировочным устройствами;
— рычага переключения.
Картер содержит все основные узлы и детали коробки передач. Он крепится к картеру сцепления, который, в свою очередь, закреплен на двигателе. Поскольку шестерни коробки передач при работе испытывают большие нагрузки, то они должны хорошо смазываться. Поэтому в картер коробки передач залито трансмиссионноемасло (в некоторых моделях автомобилей применяется моторное масло)
Валы коробки передач вращаются в подшипниках, установленных в картере, и имеют наборы шестерен с различным числом зубьев.
Синхронизаторы необходимы для плавного бесшумного и безударного включения передач путем уравнивания угловых скоростей вращающихся шестерен (наши руки на поручне вагона поезда в примере с работой сцепления).
Механизм переключения передач служит для смены передач и управляется водителем с помощью рычага из салона автомобиля. При этом замковое устройство не позволяет включаться одновременно двум передачам, а блокировочное устройство удерживает передачи от самопроизвольного выключения.
Как же происходит изменение величины крутящего момента (числа оборотов) на различных передачах? Давайте с этим разберемся на примере. Возьмем две шестерни, не поленимся и сосчитаем число их зубьев. Первая шестеренка имеет 20 зубьев, а вторая 40. Значит, при двух оборотах первой шестерни, вторая сделает только один оборот (передаточное число равно 2).
На рисунке у первой шестерни («А») 20 зубьев, у второй («Б») 40, у третьей («В») снова 20, у четвертой («Г») опять 40. Дальше простая арифметика. Первичный вал коробки передач и шестерня «А» вращаются с угловой скоростью, допустим, 2000 об/мин. Шестерня «Б» на промежуточном валу вращается в 2 раза медленнее — 1000 об/мин. Поскольку шестерни «Б» и «В» закреплены на одном валу, то третья шестеренка вращается с той же скоростью — 1000 об/мин. Тогда шестерня «Г» на вторичном валу будет вращаться еще в 2 раза медленнее — 500 об/мин.
Итак, от двигателя на первичный вал коробки передач пришло 2000 об/мин, а на вторичном валу получилось 500 об/мин, в то время как на промежуточном валу было 1000 об/мин. В данном примере передаточное число первой пары шестерен равно двум, второй пары шестерен тоже двум. Общее передаточное число этой схемы: 2?2 = 4. Следовательно, вторичный вал коробки передач будет вращаться в 4 раза медленнее, чем первичный вал.
Обратите внимание, если выведем из зацепления шестерни «Г» и «В», то вторичный вал коробки вращаться не будет. При этом прекращается передача крутящего момента и на ведущие колеса автомобиля, что соответствует нейтральной передаче.
Задняя передача, то есть вращение вторичного вала коробки передач в другую сторону, обеспечивается дополнительной осью с шестерней заднего хода. Эта шестерня необходима для того, чтобы получилось нечетное число пар шестерен, тогда крутящий момент изменит свое направление.
Поскольку в коробке передач реального автомобиля имеется большой набор шестерен, то, вводя в зацепление различные их пары (включая различные передачи), изменяем и общее передаточное отношение. Давайте посмотрим на передаточные числа двух коробок передач.
Передачи: | Ваз 2105 | Лада 110 |
---|---|---|
1 | 3.67 | 3.36 |
2 | 2.10 | 1.95 |
3 | 1.36 | 1.357 |
4 | 1.00 | 0.951 |
5 | 0.82 | 0.784 |
R(задний ход) | 3.53 | 3.53 |
Такие «неудобные» числа получаются в результате деления количества зубьев одной шестерни на неудобно делимое число зубьев второй шестерни и далее по цепочке. Если передаточное число равно единице (1,00), то это означает, что вторичный вал вращается с такой же угловой скоростью, что и первичный. Передачу, на которой скорость вращения валов уравнена, обычно называют прямой и, как правило, это четвертая передача.
Вернемся к велосипеду. На современных велосипедах тоже есть передачи. Владельцы такого транспортного средства наверняка обратили внимание на то, что когда сзади включена звездочка с большим числом зубьев, то крутить педали легко, но скорость движения получается небольшой. Если переключиться на меньшую звездочку (с меньшим числом зубьев), то скорость возрастает, но усилие на педалях при этом увеличивается.
Меняя звездочки на велосипеде (переключая передачи), можно найти оптимальный режим движения с учетом сил велосипедиста и дорожных условий. Тот же принцип используется и в автомобиле. Передачи необходимо переключать в зависимости от скорости движения, от дорожных условий и с учетом возможностей двигателя.
Первая передача и передача заднего хода — самые «сильные», и двигателю не трудно крутить колеса, но машина в этом случае движется медленно. На большой скорости движения используются «шустрые» пятая и четвертая передачи, но в крутую гору на них не заедешь, двигателю просто не хватает сил (как и велосипедисту), и тогда приходится переключаться на более низкие но «сильные» передачи.
Первая передача необходима для начала движения автомобиля, для того чтобы двигатель смог сдвинуть с места тяжелый авто. Далее, увеличив скорость движения и обеспечив некоторый запас инерции движения машины, можно переключиться на вторую передачу, более «слабую», но более «быструю», затем на третью, четвертую и пятую передачу.
Все ступеньки переключения передач вверх (с первой по пятую) следует проходить последовательно. Переключение передач в нисходящем порядке можно производить, «прыгая через ступеньки». Например, после пятой передачи может потребоваться первая или после четвертой — вторая.
Автоматическая коробка передач (правила пользования)
При вождении автомобиля водителю приходится постоянно работать педалью сцепления и рычагом коробки передач. Это отнимает немало времени, а также доставляет неудобства начинающим автомобилистам. В свое время у самых ленивых возник вопрос — можно ли избежать этих повторяющихся действий? Так появилась конструкция, которая называется автоматическая коробка передач.
В автомобиле с автоматической коробкой передач всего две педали («газ» и тормоз). Когда водитель давит на «газ» или на тормоз, выбор и смена передач происходит автоматически.
Наверное, не стоит тратить время на изучение устройства этого сложного агрегата, так как его сервисное обслуживание и ремонт возможны только в специализированных центрах. Рассмотрим лишь правила пользования автоматической коробкой передач.
Правила пользования автоматической коробкой передач
В автомобиле с «автоматом» рычага переключения передач нет, но зато есть переключатель режимов работы коробки передач, который называется рычагом селектора.
Рычаг селектора имеет следующие основные положения: Р, R, N, D. Есть также положения D3 (или S) и D2 (или L). Могут быть и дополнительные режимы, например W (winter — зима).
Давайте разберемся с этими буквами, одновременно поглядывая на схему переключения рычага селектора.
Р (парковка) — в это положение рычаг можно переводить только после полной остановки автомобиля и фиксации его стояночным тормозом. Именно в этом положении следует оставлять машину на стоянке, а также осуществлять запуск двигателя.
R (задний ход) — можно включать, удерживая педаль тормоза нажатой и только после полной остановки автомобиля (иначе не избежать поломок).
N (нейтральное положение) — означает, что крутящий момент от двигателя не передается ведущим колесам. При этом положении рычага разрешается запуск двигателя. Во время движения автомобиля переводить рычаг селектора в положение «N» нельзя, возможна поломка коробки передач!
D (движение) — при этом положении рычага селектора обеспечивается движение автомобиля в нормальных условиях. В этом режиме передачи меняются по мере увеличения или уменьшения скорости движения автомобиля автоматически, без участия водителя.
D3 (S) — диапазон пониженных передач. Обычно включается на дороге с небольшими подъемами и спусками. Торможение двигателем более эффективно, чем в положении D.
D2 (L) — второй диапазон пониженных передач. Включается водителем в тяжелых дорожных условиях (горы, бездорожье и тому подобное). Торможение двигателем при этом более эффективно, чем в положении S.
Перевод рычага селектора автоматической коробки передач из положения D в положение D3 или D2 и обратно может производиться во время движения автомобиля.
Существуют также «автоматы» с режимом ручного переключения передач. При переходе на такой режим необходимо перевести рычаг селектора в дополнительный «коридор». Кратковременно отклоняя рычаг к отметке » + » или «-«, водитель имеет возможность последовательно переключать передачи в порядке повышения или понижения.
Для начала движения автомобиля с автоматической коробкой передач следует, нажав правой ногой на педаль тормоза, рукой перевести рычаг селектора из положения Р, R или N в положение D (движение), и затем выключить стояночный тормоз. При отпускании педали тормоза (правой ногой) автомобиль сразу же начинает движение!
Для увеличения скорости движения надо лишь перенести правую ногу на педаль «газа» и плавно ее нажать. Передачи при разгоне автомобиля будут меняться автоматически. Для снижения скорости движения достаточно ослабить усилие на педали «газа» или просто ее отпустить, при этом передачи будут самостоятельно переключаться в нисходящем порядке. Если необходимо снизить скорость более активно или вообще остановиться, то должны перенести правую ногу на педаль тормоза и мягко с ней поработать.
Левая нога в управлении автомобилем участия не принимает!
Для начала движения после кратковременной остановки (или после снижения скорости) снова переносим правую ногу с педали тормоза на педаль «газа» и автомобиль начинает (продолжает) движение. Причем рычаг селектора постоянно остается в положении D (движение). Перемещать его не надо, кроме как при длительных остановках. Таким образом, при городском цикле движения водителю достаточно один раз перевести рычаг селектора автоматической коробки передач в положение D (движение) и, нажимая правой ногой на педаль «газа» или тормоза, регулировать скорость движения.
ГЛАВА III. ХОДОВАЯ ЧАСТЬ
Ходовая часть предназначена для перемещения автомобиля по дороге с определенным уровнем комфорта, без тряски и вибраций. Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы, действующие на автомобиль со стороны дороги.
Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами и быстрые колебания с малыми амплитудами. От быстрых колебаний защищают резиновые опоры двигателя и коробки передач, мягкая обивка сидений и так далее. Защитой от медленных колебаний служат упругие элементы подвески, колеса и шины.
Ходовая часть состоит из:
— передней и задней подвесок колес;
— колес и шин.
Подвеска колес
Подвеска предназначена для смягчения и гашения колебаний, передаваемых от неровностей дороги на кузов автомобиля. Благодаря подвеске кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.
Давайте разберемся с тем, как колеса автомобиля связаны с кузовом, а для примера возьмем. деревенскую телегу. Если никогда не ездили на деревенской телеге, то скажем, что колеса телеги жестко закреплены к ее «кузову», в результате чего все проселочные ямы и ухабы отзываются на седоках. Мало того, на большой скорости телега в буквальном смысле слова «рассыпается» и происходит это именно из-за «жесткости». Чтобы транспорт служил подольше, а «седоки» чувствовали себя получше, колеса автомобилей связаны с кузовом не жестко.
К примеру, если поднять автомобиль в воздух, то его колеса отвиснут и будут «болтаться», подвешенные к кузову на рычагах и пружинах. Вот это и есть подвеска колес автомобиля. Конечно, шарнирно закрепленные рычаги и пружины «железные», но эта конструкция позволяет колесам перемещаться относительно кузова. А правильнее сказать, кузов имеет возможность перемещаться относительно колес, которые движутся по дороге.
Подвеска может быть зависимой и независимой. Зависимая подвеска, это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес второе наклоняется на такой же угол.
Схема работы зависимой подвески колес.
Независимая подвеска, это когда колеса одной оси автомобиля жестко друг с другом не связаны (передние колеса). При наезде на неровность дороги одно из колес может менять свое положение, не изменяя при этом положения второго колеса.
Схема работы независимой подвески колес.
Упругий элемент подвески (пружина или рессора) служит для смягчения ударов и колебаний, передаваемых от дороги к кузову. Гасящий элемент подвески — амортизатор необходим для гашения колебаний кузова за счет сопротивления, возникающего при перетекании жидкости через калиброванные отверстия из полости А в полость Б и обратно.
Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах.
На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти в отрыв от земли. В отрыв ему не дает возможности уйти стабилизатор, который, прижавшись к земле одним концом, вторым своим концом прижимает и другую сторону автомобиля.
При наезде какого-либо колеса на препятствие стержень стабилизатора закручивается и стремится побыстрее вернуть это колесо на свое место.
Дополнительная информация
- Для чего нужна подвеска автомобиля и как работает
- Подвеска МакФерсон — что это (плюсы и минусы)
- Амортизаторы автомобиля — какие бывают и что выбрать
- Торсионная подвеска машины — принцип работы
- Что такое сайлентблок в подвеске — зачем его надо менять
- Развал и схождение колес. Что это такое и когда делать
Неисправности ходовой части
5.1. Шины легковых автомобилей имеют остаточную высоту рисунка протектора менее 1,6 мм, грузовых автомобилей — 1 мм, автобусов — 2 мм, мотоциклов и мопедов — 0,8 мм.
Чтобы понять, о чем идет разговор, возьмите в руки свои ботинки и рассмотрите рисунок подошвы. Если рисунка нет, значит, его высота равна нулю и при ходьбе по скользкой дороге вы будете постоянно поскальзываться, а может быть и падать. Если рисунок выступает и не сильно изношен, то ходить удобно, обувь надежно фиксирует своим рисунком (протектором) положение ноги человека на дороге. А если ваша обувь имеет рельефную горную подошву, то вообще никаких проблем нет.
То же самое относится и к рисунку протектора автомобильной шины. При сильном износе протектора шин автомобиль начинает значительно хуже «цепляться» за дорогу и легче скользить по ней.
Дополнительная информация
- Полная расшифровка маркировки шин и всех надписей
- Рекомендуемое давление в шинах автомобиля
- Строение колеса и устройство автомобильной шины
- Новая маркировка шин для потребителей
- Что такое докатка или запасное колесо в автомобиле
ГЛАВА IV. Механизмы управления
Во время движения автомобиля по дороге возникает необходимость в изменении направления его движения, уменьшении скорости, остановке и стоянке. Все это обеспечивают механизмы управления, которые включают рулевое управление и тормозную систему.
Рулевое управление
Рулевое управление служит для обеспечения движения автомобиля в заданном водителем направлении. Оно состоит из:
— рулевого механизма,
— рулевого привода. Рулевой механизм служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. В отечественных легковых автомобилях распространение получили рулевые механизмы червячного и реечного типов.
Рулевой механизм червячного типа состоит из:
— рулевого колеса с валом;
— картера;
— пары «червяк-ролик»;
— рулевой сошки.
В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк связан с нижним концом рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает обкатываться по профилю червяка, что приводит к повороту вала рулевой сошки.
Червячная пара, как и любой другой редуктор требует смазки, поэтому в картер рулевого механизма заливается трансмиссионное масло, марка которого указана в инструкции к автомобилю.
Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. Далее от сошки усилие передается на рулевой привод и от него на управляемые (передние) колеса.
В современных автомобилях применяется безопасный рулевой вал, который может складываться или сжиматься при ударе водителя о рулевое колесо во время аварии (во избежание серьезного повреждения грудной клетки).
Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы.
Углы должны быть различными для того, чтобы колеса могли двигаться по дороге без проскальзывания. При движении на повороте каждое из колес описывает свою окружность, отличную от окружности другого колеса, причем внешнее колесо (дальнее от центра поворота) движется по большему радиусу, чем внутреннее.
Поскольку центр поворота у колес общий, то соответственно внешнее колесо необходимо повернуть на меньший угол, чем внутреннее. Это обеспечивается конструкцией рулевой трапеции, которая включает рулевые тяги с шарнирами и поворотные рычаги.
Каждая рулевая тяга на концах имеет шарниры, позволяющие подвижным деталям рулевого привода свободно поворачиваться относительно друг друга и кузова в разных плоскостях.
Рулевой привод, применяемый с механизмом червячного типа, включает:
— правую и левую боковые тяги;
— среднюю тягу;
— маятниковый рычаг;
— правый и левый поворотные рычаги колес. Рулевой механизм реечного типа
отличается от червячного тем, что вместо пары «червяк-ролик» применяется пара «шестерня-рейка». Поворачивая рулевое колесо, водитель вращает шестерню, которая заставляет рейку перемещаться вправо или влево. А дальше рейка передает прилагаемое к рулевому колесу усилие на рулевой привод.
Рулевой привод, применяемый с механизмом реечного типа, тоже отличается от своего предшественника. Он гораздо проще и имеет всего две рулевые тяги. Тяги передают у на поворотные рычаги телескопических стоек вески колес и поворачивают их вправо или.
Дополнительная информация
- Устройство гидроусилителя и электроусилителя руля
- Рулевое управление машины. Принцип работы
- Углы установки колес автомобиля. На что влияют?
- Гидроусилитель руля. Неиправности и обслуживание
Тормозная система
Тормозная система предназначена для уменьшения скорости движения и остановки автомобиля (рабочая тормозная система). Она также позволяет удерживать автомобиль от самопроизвольного движения во время стоянки (стояночная тормозная система).
При неисправности усилителя прикладываемое к рулевому колесу усилие значительно возрастает и в случае внезапного изменения дорожной обстановки водитель может не успеть быстро повернуть руль. Кроме того, при неработающем усилителе руля возрастает физическая и эмоциональная усталость водителя. После непродолжительной поездки он уже не в состоянии принимать правильные решения и может стать виновником дорожно-транспортного происшествия.
Рабочая тормозная система приводится в действие нажатием на педаль тормоза, которая располагается в салоне автомобиля. Усилие ноги водителя передается на тормозные механизмы всех четырех колес.
Стояночная тормозная система нужна не только на стоянке, она необходима также для предотвращения скатывания автомобиля назад при трогании с места на подъемах дороги. С помощью рычага стояночного тормоза, который располагается между передними сиденьями автомобиля, водитель может управлять тормозными механизмами задних колес.
Рабочая тормозная система состоит из:
— тормозного привода;
— тормозных механизмов колес.
Привод тормозов служит для передачи усилия ноги водителя от педали тормоза к исполнительным тормозным механизмам колес автомобиля.
На легковых автомобилях применяется гидравлический привод тормозов, в котором используется специальная тормозная жидкость.
Гидравлический привод тормозов состоит из:
— педали тормоза;
— главного тормозного цилиндра;
— рабочих тормозных цилиндров;
— тормозных трубок;
— вакуумного усилителя.
Когда водитель нажимает на педаль тормоза, его усилие передается через шток на поршень главного тормозного цилиндра. Поршень давит на жидкость, которая находится в главном цилиндре и трубопроводах. Давление жидкости от главного цилиндра передается по трубкам ко всем колесным тормозным цилиндрам, заставляя выдвигаться их поршни. Поршни, в свою очередь, передают усилие на тормозные колодки передних и задних колес, которые, прижимаясь к тормозным дискам и барабанам, останавливают автомобиль.
Современный гидропривод тормозов состоит из двух независимых контуров, связывающих между собой пару колес. При отказе одного из контуров срабатывает второй, что обеспечивает, хотя и менее эффективное, но все-таки торможение автомобиля.
К примеру, на заднеприводных автомобилях ВАЗ один контур объединяет тормозные механизмы передних колес, а другой — задних. На переднеприводных ВАЗах между собой связаны: переднее левое колесо с задним правым и переднее правое с задним левым.
Для уменьшения усилия при нажатии на педаль тормоза и более эффективной работы системы применяется вакуумный усилитель. Усилитель заметно облегчает работу водителя, так как использование педали тормоза при движении в городском цикле носит постоянный характер и довольно быстро утомляет.
Вакуумный усилитель конструктивно связан с главным тормозным цилиндром. Основным элементом усилителя является камера, разделенная резиновой перегородкой (диафрагмой) на два объема. Один объем связан с впускным трубопроводом двигателя, где создается разрежение около 0,8 кг/см, а другой сообщается с атмосферой (1 кг/см). Из-за перепада давления в 0,2 кг/см, благодаря большой площади диафрагмы, «помогающее» усилие на педали тормоза может достигать 30-40 кг и более.
Тормозной механизм предназначен для уменьшения скорости вращения колеса за счет сил трения, возникающих между накладками тормозных колодок и тормозным барабаном или диском.
Тормозные механизмы делятся на барабанные и дисковые. На легковых автомобилях малого и среднего классов барабанные тормозные механизмы обычно применяются на задних колесах, а дисковые на передних. Хотя в зависимости от модели автомобиля могут применяться только барабанные или только дисковые тормоза на всех четырех колесах.
Барабанный тормозной механизм состоит из:
— тормозного щита;
— тормозного цилиндра;
— двух тормозных колодок;
— стяжных пружин;
— тормозного барабана.
Тормозной щит жестко крепится на балке заднего моста автомобиля, а на щите, в свою очередь, закреплен рабочий тормозной цилиндр. При нажатии на педаль тормоза поршни в цилиндре расходятся и начинают давить на верхние концы тормозных колодок. Колодки в форме полуколец прижимаются своими накладками к внутренней поверхности тормозного барабана, который при движении автомобиля вращается вместе с закрепленным на ступице колесом.
Торможение колеса происходит за счет сил трения, возникающих между накладками колодок и барабаном. Когда воздействие на педаль тормоза прекращается, стяжные пружины оттягивают колодки на исходные позиции.
Дисковый тормозной механизм состоит из:
— суппорта;
— одного или двух тормозных цилиндров;
— двух тормозных колодок;
— тормозного диска.
Суппорт крепится на поворотном кулаке переднего колеса автомобиля . В нем находятся два тормозных цилиндра и две тормозные колодки). Колодки с обеих сторон «обнимают» тормозной диск, который вращается вместе с закрепленным на ступице колесом.
При нажатии на педаль тормоза поршни начинают выходить из цилиндров и прижимают тормозные колодки к диску. После того, как водитель отпустит педаль, колодки и поршни возвращаются в исходное положение за счет легкого «биения» диска.
Дисковые тормоза очень эффективны и просты в обслуживании. Даже дилетанту замена тормозных колодок в этих механизмах доставляет мало хлопот.
Стояночный тормоз приводится в действие поднятием рычага стояночного тормоза (в обиходе — «ручника») в верхнее положение.
Поднимая рычаг стояночного тормоза вверх, водитель натягивает два металлических троса, последний из которых заставляет тормозные колодки задних колес прижаться к барабанам и, как следствие этого, автомобиль удерживается на месте в неподвижном состоянии.
В поднятом состоянии рычаг стояночного тормоза автоматически остается в том положении, в котором его оставил водитель, за счет работы фиксатора. Фиксатор необходим для того, чтобы не произошло самопроизвольное выключение стояночного тормоза и бесконтрольное движение автомобиля в отсутствии водителя. Для выключения стояночного тормоза следует нажать («утопить») кнопку фиксатора и опустить рычаг «ручника» вниз.
Дополнительная информация:
- Устройство тормозной системы автомобиля
- Классификация и выбор тормозных колодок
- Как работает антиблокировочная тормозная система ABS
- Тормозная жидкость. Какая бывает и как часто менять?
- Почему скрипят и свистят тормозные колодки?
- Как определить износ тормозных колодок?
ГЛАВА V. ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ
Электрооборудование авто включает источники и потребители тока.
Источники тока
К источникам тока относятся аккумуляторная батарея и генератор. Аккумуляторная батарея предназначена для питания потребителей электрическим током при неработающем двигателе и при его работе на малых оборотах. Батарея расположена в моторном отсеке автомобиля и крепится на специальной полке. «Минус» аккумуляторной батареи соединен с «массой» (кузовом) автомобиля, а «плюс» соединяется с электрической цепью потребителей тока с помощью проводников.
Аккумуляторная батарея состоит из шести аккумуляторов, объединенных в одном корпусе и соединенных между собой последовательно в единую электрическую цепь. Каждый аккумулятор в результате протекающих в нем электрохимических процессов «выдает» по 2 В, поэтому в сумме на полюсных штырях батарея имеет напряжение 12 В постоянного тока.
В зависимости от модели автомобиля могут применяться батареи различной мощности. Например, на большинстве моделей автомобилей ВАЗ устанавливается аккумуляторная батарея 6СТ-55А. Маркировка батареи означает следующее:
6 — количество аккумуляторов в батарее. Для легковых автомобилей эта цифра всегда будет постоянной, так как в них используются 12-вольтовые (6х2 = 12) батареи.
СТ — означает, что батарея стартерного типа. Такие батареи выдерживают большие разрядные токи, что требуется для запуска двигателя с помощью самого «крупного» потребителя электроэнергии — стартера.
55 — емкость батареи, измеряемая в ампер-часах (А·ч). Чем больше емкость батареи, тем больше времени она может выдержать «издевательства» водителя при запуске холодного двигателя.
А — буквой обозначают материал, из которого сделан корпус батареи. В частности, А — это полупрозрачная пластмасса (полипропилен)
Генератор предназначен для питания электрическим током всех потребителей, а также для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах.
Генератор включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Поэтому питать потребителей и заряжать батарею он будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи. Произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора.
С увеличением частоты вращения ротора генератора вырабатываемое им напряжение постепенно увеличивается, и может наступить момент, когда напряжение превысит требуемое. Поэтому генератор работает в паре с регулятором напряжения.
Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение, поддерживая его в пределах 13,6-14,2 В. В зависимости от модели автомобиля регулятор монтируется в корпусе генератора («таблетка» на щеточном узле) или устанавливается отдельно в подкапотном пространстве.
Если вернуться к нашим велосипедам, то на некоторые из них тоже устанавливают генераторы. Пока велосипедист стоит на месте лампа фары его велосипеда не светит из-за отсутствия аккумуляторной батареи. Когда велосипед движется, генератор вырабатывает ток и фара светит. Причем по мере увеличения скорости движения она светит все ярче и ярче, так как колесико генератора вращается все быстрее и быстрее. Яркость свечения фары определяется только скоростью движения велосипеда, регулятор напряжения на нем не применяется.
Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу.
На некоторых моделях автомобилей это тот же самый ремень, который заставляет вращаться крыльчатку водяного насоса и постоянно включенный вентилятор системы охлаждения двигателя. На других моделях для привода генератора выделяется отдельный ремень. Натяжение ремня, как в одном, так и в другом случае, регулируется отклонением корпуса генератора.
На щитке приборов перед водителем имеется контрольная лампа заряда аккумуляторной батареи. При включении зажигания лампа загорается красным светом. Когда двигатель запустится, она погаснет, что будет означать начало работы генератора. Если лампочка не погасла, то у вас появились проблемы, о чем чуть ниже.
Система пуска двигателя
Система пуска двигателя включает:
— стартер с тяговым реле и механизмом привода;
— реле включения стартера;
— замок зажигания.
Схема системы пуска двигателя
Стартер представляет собой электрический двигатель постоянного тока, который служит для запуска двигателя автомобиля. Простым поворотом ключа в замке зажигания в положение запуска двигателя (стартер) ток через реле подается от аккумуляторной батареи на обмотки стартера, и двигатель запускается.
Работа стартера состоит из трех этапов:
1. Механизм привода стартера вводит шестерню на валу якоря в зацепление с зубчатым венцом маховика.
2. Начинается вращение вала якоря стартера вместе с шестерней, которая проворачивает коленчатый вал двигателя через маховик, тем самым запуская двигатель.
3. После начала работы двигателя механизм привода стартера выводит шестерню на валу якоря из зацепления с зубчатым венцом маховика.
Приборы освещения и сигнализации
Приборы освещения и сигнализации — это потребители тока, к которым электрический ток с напряжением 12 вольт подается при включении соответствующего переключателя, находящегося в салоне автомобиля.
Приборы освещения необходимы при движении автомобиля в темное время суток и в условиях недостаточной видимости. Они обозначают габаритные размеры транспортных средств, обеспечивают освещение дороги и внутренних пространств автомобиля.
Приборы освещения включают:
— фары (блок-фары);
— задние фонари;
— лампы освещения номерного знака;
— лампы освещения салона автомобиля;
— лампу освещения подкапотного пространства;
— лампу освещения багажника.
Блок-фара состоит из корпуса, отражателя и рассеивателя. Внутри нее в специальном гнезде установлена лампа, имеющая два режима работы — ближнего и дальнего света фар. Управление режимами работы фар производится из салона автомобиля с помощью переключателя. Также в фаре находится лампа габаритного света, которая включается для обозначения размеров машины. В этом же общем корпусе расположена и лампа указателя поворота.
Задние фонари имеют лампы габаритного света, которые включаются вместе с передними габаритными огнями. Там же находятся лампы стоп-сигналов, указателей поворота и заднего хода.
Приборы сигнализации служат для информирования других водителей и пешеходов об изменениях направления движения автомобиля, торможении и остановке, а также для предупреждения об опасности.
К приборам сигнализации относятся:
— передние и задние указатели поворотов;
— бортовые повторители указателей поворотов;
— лампы стоп-сигналов;
— лампы включения заднего хода;
— звуковой сигнал.
При включении кнопки (клавиши) аварийной сигнализации передние указатели поворотов, боковые повторители указателей и задние указатели работают в прерывистом режиме одновременного «мигания». Это сигнал предупреждения других участников движения о неприятностях с автомобилем или водителем.
Контрольно-измерительные приборы
Как правило, все контрольно-измерительные приборы находятся в салоне автомобиля на щитке приборов перед водителем. При работающем двигателе категорически не допускается свечение красных лампочек или положение стрелки указателя в красном секторе шкалы на любом приборе, так как это говорит о неисправности в каком-то узле или системе. В этом случае нельзя начинать или продолжать движение до устранения причины появления красного сигнала на щитке приборов.
В цветовой гамме ламп любого щитка приборов применяется принцип светофора: красный — ехать нельзя, желтый — скоро будут проблемы, а если зеленый — то все в порядке, ехать можно.
Дополнительная информация:
- Автомобильный генератор. Устройство и как он работает?
- Обслуживание и зарядка автомобильного аккумулятора
- Автомобильный тахометр — что это такое
- Автомобильный спидометр. Почему он «врет»?
- Как работают свечи зажигания?
- Высоковольтные провода зажигания. Устройство
- Какие бывают и как выбрать лампочки для автомобиля?
ГЛАВА VI. КУЗОВ АВТОМОБИЛЯ
Устройство и оборудование кузова
Кузов является несущим элементом автомобиля. В кузове располагаются водитель и пассажиры, к кузову крепятся двигатель, агрегаты трансмиссии и ходовой части, механизмы управления и дополнительное оборудование. Он же является «минусовым» проводником для системы электрооборудования автомобиля. Кузов автомобиля, это сложная инженерная, геометрически правильная конструкция из металла, стекла и других материалов.
Металлическая часть кузова состоит из днища и крыши, крыльев и панелей, дверей, крышек капота и багажника, а также множества более мелких элементов. В специальные проемы кузова устанавливаются лобовое, заднее и боковые стекла. Говорить о всевозможных деталях из пластмассы и других искусственных материалов вообще не имеет смысла, а об их количестве можно только догадываться.
Для размещения водителя и пассажиров в салоне предусмотрены сиденья. С целью обеспечения безопасности людей в движущемся автомобиле сиденья оборудованы специальными ремнями. В случае аварии эти ремни способны удержать взрослого человека на его сиденье.
Внутри салона располагается все необходимые органы управления автомобилем и приборы для контроля за работой его агрегатов и систем. Комфорт при движении в любых погодных условиях обеспечивают системы вентиляции и отопления салона машины. В салоне заложен весь комплекс комфортных услуг, начиная от пепельницы и подлокотников, и заканчивая тем, что придет вам в голову и на что хватит средств.
Предела усовершенствованию внутреннего пространства салона нет. Но при этом не должны быть нарушены требования по обеспечению безопасности дорожного движения. Имеется в виду, что наряду с установкой внутрисалонного панорамного зеркала, радиоприемника, телевизора, телефона и другого «безобидного» дополнительного оборудования, установка, например, зеркальных стекол однозначно запрещена.
Обычно по состоянию салона можно легко определить характер и привычки водителя. Салон автомобиля как дом, в котором вы проводите немалую часть своей жизни, только дом этот в миниатюре. Содержать его по-другому, чем обычное жилище, просто невозможно.
Эксплуатация кузова
Первое, что видит владелец, подходя к автомобилю, это кузов. И какова его реакция на увиденное? Он радостно улыбается, если кузов блестит или мрачно вздыхает, если вместо блеска — ржавчина и дыры. Чтобы кузов служил подольше, изначально следует произвести антикоррозийную обработку днища и скрытых полостей. Есть умельцы, которые сами делают эту трудоемкую и не очень чистую работу, но лучше сделать это на специализированной станции. Обработка будет качественной, если сделана она под большим давлением, которое в домашних условиях создать сложно.
Подкрылки, которые закрывают внутренние полости крыльев, жизненно необходимы для некоторых моделей автомобилей. Ни для кого не секрет, что на машинах в первую очередь ржаветь начинают именно крылья (передние). Происходит это по причине постоянной мокрой «пескоструйной обработки» и плохой вентиляции передней области крыльев. Уж в этом случае экономить на подкрылках точно не стоит.
Лакокрасочное покрытие кузова «дышит», и именно от вас зависит, чем будет «дышать» ваш «дом на колесах». В наших отечественных условиях с грязью и солью на дорогах этому вопросу надо отдать определенное личное время. Это и банальная мойка кузова (желательно ежедневная), и покрытие его специальными пастами, полировка и прочая косметика. Небольшие царапины на кузове необходимо сразу подкрашивать, пятна ржавчины удалять, потускневшие детали хромированной декоративной отделки полировать и так далее.
Большая беда современных автомобилей — это наличие многочисленных пластмассовых накладок, щитков, ручек и прочих элементов облицовки салона. Дребезжание, поскрипывание, попискивание и прочие неприятные уху звуки во время движения не так уж безобидны. Любой шум постепенно расшатывает нервную систему человека, и если не найти способ устранения «шумовой атаки», то можно стать неврастеником. Как правило, владельцы автомобилей сами находят путь к победе в «пластмассовой войне», начиная от подкладывания бумажек и тряпочек и заканчивая шумоизоляцией автомобиля.
В процессе эксплуатации могут порваться, завернуться, замяться резиновые уплотнители дверей и багажника, что позволит попадать в салон летом пыли, а зимой холодному воздуху. Кроме этого, в салон начинают «подсасываться» выхлопные газы, а это серьезно. Водитель становится вялым и невнимательным, замедляется реакция, ухудшается зрение. И если у вас нет желания постоянно попадать в аварийные ситуации, то стоит восстановить герметичность салона кузова.
Источник http://amastercar.ru/articles/auto_book.shtml