Электрооборудование автомобиля
Электрооборудование автомобиля. Устройство и работа. Особенности
Электрооборудование автомобиля представляет весь перечень устройств, которые вырабатывают, передают, а также потребляют электрическую энергию в машине. В целом это сложный комплекс систем, устройств и приборов, которые обеспечивают функционирование всех частей автомобиля, автоматизацию процессов, а также создают уют, комфорт и безопасность для людей.
Все главные узлы и агрегаты электрического оборудования взаимосвязаны между собой с помощью проводов. Они выступают в качестве своеобразной нервной и кровеносной системы. В одном случае по ним передается сигнал для запуска того или иного устройства, в другом случае они передают электроэнергию для питания приборов. Обрывы проводов могут привести к воспламенению или невозможности работы конкретного устройства в машине. А поломка какого-либо электрооборудования может привести к аварии, невозможности запуска автомобиля или его эксплуатации.
Виды
В качестве источников электротока выступают устройства, которые преобразуют электроэнергию. Это генератор и аккумулятор, где генератор преобразует механическую энергию в электрическую, а аккумулятор — химическую в электрическую. В качестве потребителей электрической электроэнергии выступает устройство, преобразует электроэнергию в другие виды, к примеру, движения, света, тепла. К ним можно отнести систему запуска движка, лампочки, измерительные устройства, электроприборы в виде стеклоочистителей, печки, прикуривателя, радио, кондиционера и тому подобное.
Аккумулятор используется для питания потребителей электротоком во время запуска движка, во время его низких оборотов, либо в момент, когда он отключен. Генератор питает электротоком все электрические устройства, в том числе заряжает аккумулятор. Мощность и емкость данных устройств должна отвечать аналогичным параметрам потребителей при различных режимах работы машины.
Электрооборудование автомобиля в виде потребителей энергии классифицируются на 3 составляющие:
- Кратковременного действия.
- Длительного действия.
- Основного действия.
К устройствам основного действия относятся устройства, которые нужны для поддержки работоспособности машины. Это устройства впрыска, запуска, управления движком, система подачи топлива, АКП, электрический усилитель и так далее.
К устройствам длительного действия относятся устройства в виде кондиционеров, освещения, безопасности, навигационной аппаратуры, противоугонных устройств, печки и тому подобное.
К устройствам кратковременного действия относятся устройства в виде систем запуска, прикуривателя, подачи сигнала, свечей накаливания и так далее.
В качестве устройств управления выступают предохранительные щитки, блоки управления и реле. Они согласуют функционирование источников и потребителей энергии. При помощи блоков управления обеспечивается контролирование потребления электроэнергии, напряжения и нагрузок на устройствах, управление обогревателями, очистителями стекол, системой освещения и так далее. Кроме проводки в бортовой системе применяются шины данных, при помощи которых соединяются электронные блоки управления.
Устройство
Аккумулятор является одним из важнейших элементов электрооборудования автомобиля. Он представляет химический источник электротока, который работает при помощи накопления и последующей отдачи энергии. Накопление и передача заряда обеспечивается переходом ряда элементов из одного состояния в другое. Главными характеристиками аккумуляторной батареи является емкость и напряжение. Его корпус выполнен из пластика, стойкой к кислоте. В нем имеется 6 секций, в которых находятся элементы, выполненные из пластин и сепараторов. Эти элементы соединяются с помощью мостиков, а корпус закрывается пластмассовой крышкой. На батарее имеются два выхода, к которым подсоединяются клеммы проводов. Аккумулятор находится в подкапотном отсеке машины.
Электрический генератор — это устройство, которое смахивает на электрический двигатель, но имеет принципиальное от него отличие. Данный элемент создает электроэнергию благодаря вращению его якоря посредством ременной передачи, получающее вращательное движение от ДВС. Генератор имеет 2 обмотки, благодаря чему обеспечивается стабилизация напряжения, которое он вырабатывает. Принцип его работы базируется на эффекте самоиндукции.
Далее необходимо выделить элементы, которые обеспечивают запуск и последующую работу ДВС, а значит и непосредственное перемещение машины.
Стартер – это своего рода электродвигатель, который совершает вращение благодаря энергии аккумуляторной батареи. Его главная цель кроется в начальном старте. Затем появляется электрическая икра, вследствие чего происходит воспламенение топлива. В результате двигатель начинает работать. Чтобы создать такую искру, используется повышающая катушка, свечи, а также распределитель искры.
Повышающая катушка выполнена из ферромагнитного сердечника с 2-мя обмотками. На одной из обмоток находится меньшее число витков, благодаря чему создается магнитное поле. Это поле создает магнитное поле на второй обмотке, но уже с более высоким напряжением. В результате при подаче напряжения на свечи создается искра.
Электрическая свеча представляет элемент, который создает искру непосредственно в цилиндре ДВС. У нее есть контакт, к которому подходит провод с высоким напряжением. На цилиндрах имеются электроды с наименьшим зазором, в которых и происходит создание искры. Между свечами и катушкой располагается распределитель, который и передает высокое напряжение непосредственно на свечу, которая должна в необходимый момент времени подать искру на цилиндр.
Система освещения используется при перемещении машины при недостаточной освещенности окружающей среды. В данную систему включены фары, задние фонари, лампочка освещения номера, лампочки освещения в салоне, отделения багажа, отсека мотора, зоны педалей и так далее.
Световая сигнализация используется с целью предупреждения других участников движения о маневрах, поворотах, заднем ходе, то есть о смене направления перемещения машины. Данная система имеет передние сигнальные лампочки, задние фонари, боковые повторители поворотов, лампы на панели приборов, выключатели, стоп-сигналы и другое электрооборудование автомобиля.
Фары необходимы для освещения окружающего пространства. В первую очередь они необходимы для освещения дороги, чтобы водитель имел представление об окружающей обстановке. Каждая машина имеет фары, которые расположены симметрично. Передние фары в большинстве случаев выполнены в одном корпусе. В нем могут находиться ряд элементов: дальний, а также ближний свет, ходовые и габаритные огни. Иногда в них даже размещаются поворотники.
Ближний свет необходим в случаях, когда наблюдается поток встречного транспорта. Его главная особенность заключается в том, что он не слепит водителей встречного транспорта, при этом хорошо освещает правую сторону дороги. Дальний свет также используется с целью освещения, но только в том случае, когда нет встречного потока. Его главная особенность в том, что этот свет выделяется своей мощностью и интенсивностью, благодаря чему он освещает пространство на довольно большое расстояние, которое находится впереди машины.
При помощи габаритных огней и поворотников водитель дает важную информацию всем участникам движения о габаритах своего автомобиля, а также планируемых остановках и изменениях направления движения. Также в машине имеется прикуриватель, могут быть розетки usb и так далее.
В зависимости от текущей комплектации машины в ней могут иметься или отсутствовать следующее электрооборудование автомобиля: системы безопасности, которые включают в себя электронатяжители ремней, автоматическую коробку с управляющей электроникой, электронные элементы помощи водителю, маршрутный компьютер, помощь при подъеме в гору, подушки безопасности и так далее.
Применение
Электрооборудование автомобиля включает множество элементов, включая различные системы, проводку, элементы питания и так далее. В первую очередь оно предназначено для производства электрической энергии и ее доставки потребителям электроэнергии. Сегодня количество элементов, которые потребляют электрическую энергию, в том числе проводов, которые необходимы для доставки, распределения и управления, возросло в разы. Общая длина проводов и их толщина могут иметь суммарную массу более 50 кг. Это очень много, учитывая то, что количество электрических устройств все время увеличивается. Имеется большая вероятность, что к 2025 году сеть проводов в машинах может достичь почти 100 кг.
Для снижения веса электрических проводов сегодня широко применяются шины, которые предают цифровые сигналы. С помощью такой архитектуры можно существенно снизить вес и количество применяемых проводов. Это приводит к тому, что удается избавиться от сотен метров проводки, в том числе снизить стоимость затрат, ведь применяемая в проводах медь стоит довольно дорого.
В будущем проводка и электрооборудование автомобиля станет еще меньше, ведь будет применяться схема с одним центральным процессором. Именно сюда будет стекаться вся информация, процессор будет контролировать все системы электрооборудования машины. Все функции будут выполняться операционной системой. Исчезнет порядка 75 управляющих блоков, которые сегодня имеют собственные программы и алгоритмы действия.
Естественно, что благодаря уменьшению управляющих блоков и числа проводов. Электрооборудование автомобиля станет на порядок легче и компактнее. Это прибавит стабильности, ведь меньшее число компонентов обеспечивает меньшее количество сбоев. Автомобиль станет подобен компьютерному устройству. К нему можно будет с легкостью подключать новые девайсы и изменять параметры существующих. В большей части случаев можно будет поменять программу, то есть загрузить обновление, чтобы убрать ошибку.
Управление карбюратором – что из себя представляет и как устроено
Современные карбюраторы – это не просто топливораспределительный узел автомобиля, но и по-настоящему «умная» деталь. Использование всевозможных электронных системы управления позволило совершить реальный прорыв в концепте карбюраторных агрегатов, когда, казалось бы, инжекторы вытеснили их из привычной сферы использования. В итоге, карбюраторы нынешних автомобилей являются чуть ли ни обучаемыми роботами, которые самостоятельно отлаживают свою работу и делают эксплуатацию машины для водителя в разы комфортабельнее. Более подробно именно о том, как это происходит и возможно в принципе, поговорим в представленной ниже статье.
Электронное управление карбюратором – что это такое
С 50-х годов прошлого столетия карбюраторы начали активно использоваться в конструкции бензиновых средств передвижения. Поначалу, естественно, диковинная и очень удобная деталь для качественного смесеобразования нравилась всем и особой критики не подвергалась. Однако по истечению некоторого времени карбюраторы стали обыденностью машиностроения, вследствие чего к ним появилось все большее и большее количество вопросов.
Чаще всего критиковали систему смесеобразования, суть которой заключается в принципе «подсоса» воздуха в цилиндры, что и определяет объёмы формирования топливно-воздушной смеси, зачастую явно завышенные.
Долгие годы автомобильные инженеры хотели исправить имеющийся недочёт, однако проблема оставалась актуальной. В начале 70-х годов, когда борьба карбюраторных и инжекторных агрегатов начала обостряться, «с миру по нитки» удалось нейтрализовать, пожалуй, главный недостаток на тот момент в конструкции и функционировании карбюраторов. Нейтрализация произошла посредством организации электронного управления узлом.
Электронные карбюраторы стали настоящим прорывом в те года, однако даже они не смогли навязать достойную конкуренцию инжекторам. В любом случае, карбюраторные агрегаты – не редкость и на современных дорогах, поэтому их электронизация актуальна до сих пор. К слову, такая организация работы карбюратора является одним из лучших среди возможных вариантов, ведь при сохранении первоначальной конструкции узла «умная» электроника позволяет наладить его оптимальное функционирование на всех этапах раскрутки мотора.
Функции электронного оборудования карбюраторов
На этапах зарождения электронное оборудование карбюраторов не могло реализовать всё то, что от него реально требовалось. Несмотря на это, поступательное развитие электроники и работа автомобильных инженеров позволили сформировать из неё настоящий мозг топливораспределительного узла. Сегодня электронное управление карбюратором позволяет:
- Стабилизировать обороты холостого хода. Для достижения этой цели используется электрический экономайзер принудительного холостого хода (ЭПХХ). Данный элемент карбюраторного узла позволяет организовать наиболее оптимальный режим мотора на холостом ходу. Экономайзер контролирует отдельные канали и жиклёры поступления топливовоздушной смеси в мотор, когда тот работает в холостом режиме (как при стоянке на месте, так и при движении по инерции). ЭХПП карбюратора имеет свою настройку и никак не связан с воздушной заслонкой. Схема подключения экономайзера представляет собой соединение узла с контроллерами работы двигателя, которые в совместном режиме работы через электронный блок управления настраивают холостой ход автомобиля под наиболее оптимальное функционирование в данный момент времени. Блок управление ЭПХХ – есть тот самый «мозг», контролирующий объёмы топлива и периоды их поставки в цилиндры мотора при работе его в холостую, что позволяет экономить литры бензина при передвижении на автомобиле;
- Прогревать двигатель автомобиля при запуске до тех пор, пока его работа не станет стабильной. Эта функция также осуществляется благодаря ЭПХХ, что опять же исключает управление заслонкой дросселя на холостом ходу. Такой подход к работе карбюратора не только продлевает ресурс мотора посредством его грамотного прогрева, но и позволяет владельцу автомобиля существенно экономить на топливе. Отметим, что в некоторых видах электронных карбюраторов обогащение топливно-воздушной смеси на этапах прогревания мотора происходит не через экономайзер, а через движение дроссельной заслонки. Однако сейчас это большая редкость, в силу грамотной организации системы ЭПХХ;
- Отключать или, напротив, усиливать подачу топлива в цилиндры двигателя при возникновении такой необходимости. Происходит это посредством либо уже изученного нами ЭПХХ (отключает подачу топлива в мотор, если машина катится по инерции на холостом ходу, то есть без нажатой педали газа) и другого экономайзера, который подключается к работе при высоких оборотах мотора и исключает его перегрев из-за недостатка топлива. Такая возможность электронного управления карбюратора иногда позволяет сэкономить топливо, а в некоторых случаях – предотвратить серьезнейшие поломки автомобиля.
Как видите, электронное оснащение карбюраторных узлов – это очень полезна вещь, зачастую экономящая автовладельцу немалые средства.
Особенности функционирования «карбюраторной» электроники
Итак, выше были детально рассмотрены функции электронного управления карбюратора, с которыми всё предельно просто. «Как происходит их реализация?» — вполне резонный вопрос, возникающий у многих людей, которые желают разобраться с карбюраторными узлами более подробно. Для того чтобы ответить на него, сначала обратим внимание на следующую схему:
В целом, по рисунку всё понятно. Электронное управление карбюратором реализуется по принципу двухстороннего взаимодействия датчиков узлов автомобиля, которым посвящена отдельная статья на нашем ресурсе, и электронным блоком управления (ЭБУ). Последний, к слову, может быть как единым устройством для всех электронных составляющих карбюратора, так и отдельным для каждого из них. В любом случае, принцип работы электронного управления останется неизменным и будет заключаться в следующем алгоритме:
- Блок управления запрашивает информацию у датчиков мотора, обращаясь к ним по электрической цепи автомобиля;
- Получив и проанализировав полученные данные, ЭБУ решает – нужно ли как-либо реагировать на работу двигателя или нет. Если ответ положительный, то блок управления передаёт управляющий сигнал устройствам и датчикам карбюратора, которые осуществляют необходимые действия.
Данный алгоритм циклический и повторяется огромное количество раз в процессе функционирования автомобиля.
В целом, с электронным управлением карбюратора разобраться не столь сложно, если понять базовые принципы его реализации, которые были детально рассмотрены и описаны выше. Надеемся, статья дала ответы на интересующие вас вопросы. Удачи на дорогах!
Последний вздох: как и зачем устанавливали электронное управление на карбюраторы
Засоряющиеся жиклеры, плавающие холостые обороты, бесконечные провалы при разгоне… То ли дело инжектор! Но машину с инжекторным мотором позволить себе в конце прошлого века могли не все. Впрочем, вдохнуть новую жизнь в старенький мотор позволяла микропроцессорная система зажигания – забытый, недооцененный, но интересный и важный этап развития моторостроения.
Почему инжектор сменил карбюратор?
М ногие считают, что в эволюции систем питания автомобильных бензиновых моторов карбюраторы последовательно сменил моновпрыск, затем впрыск распределенный, а потом и непосредственный. Однако не все знают, что был короткий период развития карбюраторных двигателей, когда у них получилось почти вплотную подобраться по характеристикам к инжекторным! Произошло это благодаря МПСЗ – микропроцессорным системам зажигания.
Несовершенство классической системы питания и зажигания не было секретом для автоинженеров со времен появления первых автомобилей. Карбюраторный принцип смесеобразования и центробежно-вакуумный принцип поддержания оптимального угла зажигания всегда считались компромиссом – у двигателя слишком много переходных режимов, в которых карбюратор и трамблер не способны обеспечить оптимальную работу мотора, сочетающую максимальную экономичность, приемистость, эластичность, мощность и полное отсутствие детонации. А вот ЭБУ, электронный вычислительный блок, управляющий топливными форсунками и свечами инжекторной системы — может.
Однако все допотопные механические и электромеханические впрысковые системы, существовавшие до эпохи появления полноценных электронно-управляемых распределенных инжекторов (от «командогеретов» авиационных двигателей люфтваффе до многочисленных поколений автомобильных «джетроников»), по сути, слабо отличались в лучшую сторону от качественных карбюраторов. И до практической реализации инжектора в его самом массовом современном виде дошло лишь тогда, когда сделать это позволил уровень развития электроники. Создать полноценный блок ЭБУ для инжектора на радиолампах в 50-е годы ХХ века было попросту нереально. Сделать его на транзисторах 60-х годов – тоже. Лишь в 80-е годы, благодаря распространению компактных микросхем и мощных транзисторов, ЭБУ приобрел знакомые нам сегодня функционал, габариты и облик.
Карбюратор уходит, но не сдается
Когда-то первые карбюраторы представляли собой примитивную трубку с одним жиклером и дроссельной заслонкой. Однако за десятилетия эволюции их конструкция усложнилась неимоверно. Идеальными устройствами для приготовления топливовоздушной смеси они так и не стали, но заметно к ним приблизились. Поэтому, несмотря на то, что переход на распределенный электронно-управляемый впрыск был предрешен и очевиден даже инженерам советских автозаводов, мысль о том, что миллионы карбюраторных машин еще не исчерпали свой потенциал, не давала покоя многим.
Дело в том, что современный карбюратор не зря имеет сложную конструкцию: благодаря этому он, будучи исправным и идеально отрегулированным, достаточно неплохо справляется с задачей подготовки правильной бензовоздушной смеси в различных режимах работы двигателя и с учетом самых разных внешних условий. А значит, карбюратор можно попытаться оставить в покое и переключить внимание на второе из двух важнейших для работы мотора условий – правильное зажигание. Трамблер с его убогими вакуумным и центробежным регуляторами угла опережения – узкое место в моторе, он во многом губит все то, что дает карбюратор. Поэтому можно попытаться дополнить карбюратор умной электронной системой зажигания, и он приблизится по эффективности к инжектору. Так и родились микропроцессорные системы зажигания.
Для понимания идеологии этих систем нужно отметить один важный момент. Многие помнят, как едва ли не каждый советский владелец вазовской классики, Москвича или Волги стремился заменить нестабильное и примитивное штатное контактное зажигание на бесконтактное электронное. В последнем контактную группу из трамблера выбрасывали и заменяли датчиком Холла, индуктивным датчиком или даже инфракрасным. Так вот, электронные системы бесконтактного зажигания и МПСЗ – это совершенно разные вещи.
Электронное бесконтактное зажигание позволяло лишь избавиться от контактной пары и уменьшить зависимости мощности искры от просадки напряжения бортсети стартером. Ну и иногда брало на себя функцию ручного октан-корректора. А МПСЗ делала не только всё то же самое, но и — что гораздо важнее — автоматически регулировала параметры опережения зажигания, исходя из положения коленвала, оборотов и давления на впуске. С развитием микропроцессорных систем стало возможным при желании добавить датчик детонации, лямбда-зонд, датчики температуры антифриза и воздуха на впуске. Причем эта регулировка шла непрерывно, практически как у инжектора. Контроллер быстро реагировал на изменение условий работы мотора и корректировал угол опережения зажигания, учитывая в том числе и качество топлива.
Все владельцы карбюраторных автомобилей с установленным микропроцессорным зажиганием, начиная от достаточно старых и примитивных моделей МПСЗ и кончая современными, с возможностью самостоятельной ручной коррекции графиков УОЗ через Bluetooth со смартфона (!), отмечали радикальные изменения в поведении машины. «Карбовый» двигатель действительно «просыпался», идеально ровно работая на холостых оборотах и становясь приемистым и очень эластичным в движении. Также МПСЗ делала минимальной разницу между бензином и газом, если на машине было установлено газобаллонное оборудование.
Сфера автоэнтузиастов
Первые отечественные инжекторы появились на ВАЗах в середине 90-х, но массовыми стали лишь к началу 2000-х. Автомобильные заводы СССР, а затем и России слишком долго зависали на «карбюраторном этапе». Последние карбюраторные машины сходили с конвейеров ВАЗа и УАЗа аж в 2006 году, до ввода в нашей стране экологического стандарта Евро-2, в который «карб» уже не вписывался. Массовый и безвозвратный переход на инжекторные системы задержался сильно, и поэтому промежуточный этап с применением МПСЗ для автозаводов оказался неприемлемым.
Под капотом Lada 111 ‘1997–2009
Тем не менее, советская промышленность в конце 80-х производила фабричные комплекты контроллеров МПСЗ с периферией и проводкой. Модели носили характерные для своего времени названия типа «Электроника-МС2713-02» или «Электроника-МС4004». Выпускали их у нас в Москве и «почти у нас», в болгарской Софии. Такие контроллеры МПСЗ заводского производства комплектовались полным набором компонентов для самостоятельного монтажа системы на автомобиль, включая распределенные катушки зажигания (в роли которых часто выступали спаренные катушки от Оки) и даже заглушку, устанавливаемую на место удаляемого трамблера.
Главным из датчиков был, разумеется, датчик положения коленвала, который нужно было установить в КПП напротив зубьев маховика. Вторым по важности являлся датчик разрежения во впускном коллекторе, служивший основным источником информации о нагрузке на двигатель для умной электроники. У систем МПСЗ «Электроника» этот датчик был встроенным непосредственно в сам корпус контроллера и соединялся со штуцером в карбюраторе тонким шлангом.
Однако несмотря на высокий уровень гаджетов под маркой «Электроника», массовой система так и не стала. В 80-х Волжский автозавод выпускал незначительное число переднеприводных автомобилей с МПСЗ «Электроника» на экспорт; в широкой же продаже в качестве комплектов для самостоятельной установки встречались они крайне редко, и мало кто о них знал. А с развалом СССР в 1991 году фабричные МПСЗ и вовсе исчезли с прилавков магазинов.
Лет десять в сфере микропроцессорного зажигания было полное затишье, но примерно в начале 2000-х эту нишу заняли мелкосерийные самодельщики-любители, энтузиасты тюнинга, которые полностью «окучивают» ее и по сей день, создавая достаточно сложные и весьма умные устройства. Правда, количество таких проектов было относительно невелико и сейчас постепенно сокращается, ибо в наши дни спрос на МПСЗ планомерно падает по причине ухода на заслуженный отдых карбюраторных моторов и машин с ними…
Инжектор как донор для карбюратора
Кстати, стоит упомянуть любопытное ответвление развития систем МПСЗ, которое они получили уже в инжекторную эпоху. Многие энтузиасты карбюраторных машин в середине 2000-х почти одновременно пришли к лежащей на поверхности идее. Поскольку блоки управления инжекторными двигателями типа «Январей», «Микасов» и прочих «Бошей» подешевели, их стало возможно приобрести за совершенно небольшие деньги на разборках. А ведь инжекторный ЭБУ – это практически готовый и весьма совершенный блок для карбюраторной МПСЗ.
Дело в том, что инжекторный ЭБУ, собственно, не знает, где он работает. На своем родном инжекторном моторе, на карбюраторном моторе или вообще на лабораторном столе или на коленке. Блок просто методично выполняет свою программу – получает информацию от датчиков и на основе этих данных выдает управляющие сигналы для впрыска и зажигания. И если подключить к ЭБУ вместо топливных форсунок карбюратор, навесить на него модуль зажигания и датчики, то электронный блок будет работать и безупречно подавать искру в нужный момент с точностью, недоступной даже самому лучшему трамблеру, контролируя обороты, нагрузку на мотор, температуру и детонацию. Для этого, правда, нужно откорректировать прошивку, написав ее урезанный «карбюраторный» вариант. Но для настоящих энтузиастов это не так уж сложно.
Получая информацию от датчика положения коленвала, давления на впуске, детонации и иногда даже от лямбда-зондов (если владельцу карбюраторной машины было не лень врезать их в глушитель), популярные и распространенные ЭБУ типа «Январь» дали многим автостаричкам второе дыхание.
Впрочем, повторимся — сегодня история с МПСЗ постепенно сходит на нет. Микропроцессорное зажигание было бы чертовски актуально в виде заводской системы на автомобилях “доинжекторной” эпохи, но отечественным автозаводам эта промежуточная инновация оказалась не по силам. Сейчас же карбюраторных машин становится все меньше, а многие из тех, кто готов своими руками сделать что-то основательное с любимой, но немолодой машинкой, предпочитают собрать полный инжекторный комплект впрыска и зажигания, который с применением подержанных компонентов с разборки порой оказывается сопоставимым по цене с комплектом МПСЗ для карбюратора…
Источник Источник Источник Источник http://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/elektrooborudovanie-avtomobilia/
Источник Источник http://swapmotor.ru/ustrojstvo-dvigatelya/upravlenie-karbyuratorom.html
Источник Источник http://www.kolesa.ru/article/poslednij-vzdoh-kak-i-zachem-ustanavlivali-elektronnoe-upravlenie-na-karbyuratory