Турбонагнетатель воздуха в автомобиле: принцип работы, плюсы
Как работает турбонагнетатель воздуха в автомобиле, плюсы и минусы
Статья о работе автомобильного турбонагнетателя: общая теория, принцип функционирования, плюсы и минусы. В конце статьи — видео о том, как дешево увеличить мощность машины.
Содержание статьи:
- Немного истории и общей теории
- Способы компрессии
- Принципы работы автомобильного турбонагнетателя воздуха
- Плюсы и минусы
- Особенности работы на бензиновых двигателях
- Видео о том, как дешево увеличить мощность автомобиля
С момента разработки двигателя внутреннего сгорания перед инженерами встала задача повысить его мощностные характеристики. Решение данной задачи путём установки большего количества цилиндров влечёт за собой ряд таких проблем, как увеличение размеров и веса двигателя, поэтому не является оптимальным.
Ещё на заре автомобилестроения, в 1905 году, было предложено принципиально иное решение: увеличить мощность двигателя за счёт нагнетания в него дополнительного воздуха. Один из вариантов этого решения – турбонагнетатель.
Немного истории и общей теории о турбине
Для понимания роли турбонагнетателя воздуха достаточно вспомнить, что скорость до 200 км/ч, автомобили, оборудованные двигателем внутреннего сгорания, могли развивать уже в 1909 году.
Число выглядит фантастическим ровно до того момента, пока рядом с ним не встаёт рядом другое число: объём двигателя, обеспечившего автомобилю эту скорость, составлял… 28 литров! Естественно, ни о каком массовом производстве подобных монстров не могло быть и речи: они просто не могли обслуживаться без специального габаритного оборудования.
А для того, чтобы транспортное средство стало доступно широким массам потребителям, а не превратилось в аналог паровоза, объём двигателя следовало уменьшить, при этом по возможности выжав из него максимальную мощность.
Идея нагнетателя дополнительного воздушного потока позволила увеличить мощность мотора на пятьдесят процентов. Понять основные моменты, определяющие действие технического узла, несложно, если знать принципы функционирования автомобильного мотора на основе ДВС.
Для эффективного функционирования работы двигателя внутреннего сгорания важен процент соотношения воздуха и топлива в камере внутреннего сгорания. Естественным ограничением объёма смеси топлива и воздуха является объём камеры, куда эта смесь попадает благодаря перепаду давления на такте впуска топлива и где происходит её воспламенение.
Если увеличить количество топливной смеси в камере, при её сгорании будет получена большая мощность, что позволит увеличить возможности автомобиля. Подача смеси в камеру под давлением (компрессия) позволяет этого добиться.
- Читайте, что лучше: атмосферный или турбированный двигатель
Способы компрессии
Принципы работы автомобильного турбонагнетателя воздуха
Между объёмом воздуха в цилиндрах двигателя и объёмом сжигаемого в камере внутреннего сгорания топлива существует прямая связь. При этом чем больше энергии имеют выхлопные газы, тем больший вращательный момент получают турбинные колёса и, соответственно, сам компрессор.
Особой проблемой при разработке турбонагнетателя является подбор материала, из которого он изготовлен. Турбинные лопасти вращаются со скоростью более десяти тысяч оборотов в минуту и могут разогреваться до тысячи градусов. Вопрос охлаждения отчасти решается за счёт поступления дополнительного воздушного потока.
Объясним подробнее. Когда скорость вращения двигателя невелика и поток отработанных выхлопных газов низкий, турбина за счёт уменьшения своего поперечного внутреннего сечения повышает скорость потока отработанных газов, идущих на колесо. Если же обороты двигателя высокие, пропускная способность турбины увеличивается за счёт роста поперечного внутреннего сечения, и, следовательно, плотность потока пропускаемых через неё отработанных газов снижается.
При таком «разумном» управлении диапазон, в котором работа турбо нагнетателя является эффективной, существенно расширяется. Более того, вредные выбросы в атмосферу сокращаются, потребление топлива падает.
Плюсы и минусы турбонагнетателя воздуха в автомобиле
В чём достоинства турбонагнетателей
В отличие от ранних моделей механических наддувов, которые работали от коленвала и, следовательно, использовали часть мощности двигателя, работа турбонагнетателей использует по сути «дарёную» энергию выхлопных газов.
По этой причине турбо нагнетатели, безусловно, являются более эффективным инженерно-техническим решением.
Если двигатель оборудован турбонагнетателем, к его мощности прибавляется до 40 процентов. При этом налицо существенная экономия топлива.
Если же говорить о коэффициенте полезного действия, то и тут работа турбо наддува идёт «в плюс»: с увеличением размера двигателя его КПД снижается из-за потерь на трение и понижением тепловой эффективности; следовательно, чем меньше размер двигателя (что как раз и даёт наличие турбо наддува), тем выше его КПД.
Недостатки турбонагнетателей
Недостатки у дано конструкции также присутствуют, и автовладельцу следует их знать.
- На малых оборотах мотора турбо нагнетатель не слишком эффективен. Это естественно – низкое давление выхлопных газов не в состоянии «загнать» в камеру нужный объём воздуха.
Данная проблема отчасти успешно решается за счёт функции изменения геометрии турбины в зависимости от интенсивности работы двигателя и плотности потока выхлопных газов.
Ещё один существенный «минус» — так называемый «эффект турбоямы», когда водитель газует, но в первый момент автомобиль на это как бы не реагирует. Читайте подробно, что такое турбояма и почему она возникает.
Эффект вызван тем, что без жёсткой механической связи между мотором и компрессором неизбежно возникает несоответствие между эффектом работы компрессора и необходимой мощностью, которая задаётся водителем при нажатии педали газа. Инерция турбины вызывает «провал» оборотов двигателя.
Специалисты борются с данным нежелательным эффектом, настраивая двигатель, используя дополнительный электрический наддув или установку второго турбонагнетателя.
После отключения турбины она не должна сразу останавливаться. Высокая скорость оборотов крыльчатки требует, чтобы после остановки автомобиля турбина проработала какое-то время на «холостых» оборотах и остыла. В противном случае устройство очень быстро приходит в негодность.
Для того, чтобы этого избежать, турбонагнетатель снабжается турботаймером, который программируется на определённое время работы турбины вхолостую после остановки транспортного средства.
Если же автомобиль «доведён» кустарным способом и оснащён турбиной без турботаймера, о её корректном охлаждении и остановке после того, как работа двигателя прекращена, придётся позаботиться самому автомобилисту.
Особенности работы на бензиновых двигателях
Турбонагнетатель для бензиновых двигателей эффективен на двигателях впрыскового типа. Если возникает желание установить этот узел на карбюраторный мотор, это потребует целого ряда доработок — от корректировки уровня поплавковой камеры до замены жиклеров на большее сечения.
Турбонагнетатели доказали свою эффективность. Не зря ими оснащается большинство автомобилей спортивного класса. Данный технический узел применяют как на этапе производства автомобилей, так и в ситуации, когда автовладелец желает выполнить тюнинг авто. Высокий уровень КПД и ряд решений, найденных для устранения эффекта турбоямы, делают применение турбо нагнетателя наиболее эффективным на уровне остальных способов повышения давления в камере внутреннего сгорания.
Видео о том, как дешево увеличить мощность автомобиля:
Как устроен механический нагнетатель
Многие автолюбители уверены в том, что наддув двигателя может быть реализован исключительно посредством турбины. В действительности существует несколько видов агрегатов, которые обеспечивают нагнетание воздуха для улучшения мощностных показателей силового агрегата. Одним из таких агрегатов является механический нагнетатель. Мы вскользь затрагивали его устройство в материале, посвященном устройству систем наддува двигателя . Здесь же мы подробнее разберемся с принципом работы, устройством и основными неисправностями таких нагнетателей, а также попытаемся ответить на вопросы, касающиеся целесообразности их установки.
Коротко о главном
Во вступлении мы могли заметить ссылку на другой наш материал, где следующая информация уже приводилась, однако Avto.pro считает нужным напомнить, как работает наддув двигателя. Существует 2 основных метода увеличения мощностных показателей автомобиля: установка более мощного двигателя и улучшение показателей уже имеющихся агрегатов. Наддув – это одно из решений в рамках второго метода. Вот основные моменты, касающиеся работы двигателя и методик увеличения его показателей:
- На 1 объемную часть топлива должно приходиться порядка 14 о.ч. воздуха. Чем больше топлива потребляет двигатель, тем больше воздуха ему потребуется;
- Чем больше цилиндров в двигателе, тем больше габариты и масса, а чем они больше, тем больше мощности потребуется для быстрого разгона грузного автомобиля. Рано или поздно этот круг замкнется и автомобиль превратится в болид, потребляющий огромные объемы топлива и воздуха.
Благодаря применение систем наддува двигателя инженерам удается создать небольшие, достаточно мощные и экономичные двигатели внутреннего сгорания. Вопрос в том, как в таких агрегатах решена проблема всасывания больших объемов воздуха . Одним из вариантов является механический нагнетатель. Забегая наперед скажем, что нагнетатели находят широчайшее применение в тюнинге благодаря высокому КПД, хороший прибавке мощности на низких оборотах и относительной простоте конструкции, тем временем как турбины стали основным решением для серийных автомобилей.
Что такое механический нагнетатель
Механический нагнетатель – это основное устройство системы наддува двигателя, использующее не давление выхлопных газов для приведения в движение крыльчатку, как это реализовано в турбонагнетателе, а мощность двигателя, которая отбирается агрегатом от коленчатого вала. Подобные устройства часто называют суперчарджерами (от англ. Supercharger ) или компрессорами. Они делятся на 2 основных типа:
- Центробежные;
- Механические объемного типа.
Принцип работы компрессоров примерно одинаков, однако конструкцию объемных компрессоров сегодня принято считать стандартом. Как показывает статистика, использование подобных устройств в качестве элемента тюнинга приводит к незначительному уменьшению ресурса двигателя. Проблема кроется в сильном повышении оборотов. Отдельные модели компрессоров, повышающие низкие и средние обороты, напротив, сказываются на ресурсе двигателя положительно. Вместе с новыми элементами системы наддува зачастую приходится ставить и кованные поршни с аналогичными шатунами – они имеют большую устойчивость к механическим нагрузкам, а также перепадам температур и давлений.
Как устроен механический наддув
В систему механического наддува входят следующие элементы: компрессор (нагнетатель), интеркулер, воздушный фильтр, дроссельная заслонка, датчика температуры воздуха, проходящего через впускной коллектор, заслонка перепускного трубопровода, датчик давления. Максимально упрощенную схему устройства компрессора вы можете видеть на изображении ниже:
Управляется компрессор при помощи дроссельной заслонки . Она полностью открывается на высоких оборотах, однако заслонка трубопровода закрывается – так весь объем воздуха подводится ко впускному коллектору. Если обороты невелики, дроссельная заслонка открывается на небольшой угол, а заслонка трубопровода, напротив, открывается полностью, возвращая часть воздуха к компрессору. Воздух от компрессора проходит через интеркулер (хоть он требуется не всем компрессором) и охлаждается примерно на 10°C, что способствует увеличению степени сжатия. Как уже было указано ранее, механический нагнетатель приводится в действие от коленчатого вала. Крутящий момент может передавать посредством:
- Прямого привода. Компрессор при этом монтируется прямо на фланцах коленвала;
- Шестеренчатого привода. Систем приводится в действие через несколько шестерней;
- Ременного привода. Крутящий момент передается от коленвала к шкиву компрессора при помощи плоского, зубчатого или клиновидного ремня;
- Цепного привода. Система привода устроена так же, как и ременная, но использует цепь.
Стоит отметить, что от типа привода будет зависеть не только качество передачи крутящего момента , но и шумность агрегата, а также его габариты. Надежный шестеренчатый привод отличается громоздкостью и шумностью. Почти настолько же надежный цепной привод сложен в обслуживании и отличается несколько меньшей шумностью. Наиболее распространенный ременной привод нуждается в частом обслуживании, но работает тихо. Для него также характерна проблема проскальзывания.
Подробнее о центробежных нагнетателях
Центробежные нагнетатели пользуются наибольшей популярностью среди остальных типов механических компрессоров наддува. Иногда их называют нагнетателями типа Vortech, хотя такое название не вполне корректно, так как происходит от имена названия компании-производителя. К слову, данную конструкцию можно считать прообразом турбонагнетателей. Скорость вращения ключевого элемента компрессора – крыльчатки – может достигать 60 тысяч об/мин . Устройство отлично показывает себя на высоких оборотах и хуже на низких и средних. К основным элементам систем наддува с центробежным нагнетателем принято относить:
- Воздушный канал к нагнетателю;
- Крыльчатку нагнетателя;
- Кожух с диффузором;
- Окружной воздушный туннель, иначе называемый воздухосборником или улиткой.
Давление воздуха на выходе из улитки не достигает впечатляющих значений. Дело в том, что давление и скорость воздуха максимальны на входе и в средней части улитки, а уже в конце воздух проходит по расширяющему каналу – его скорость остается большой, но давление резко падает. Впрочем, давление наддува оказывается достаточно высоким для существенного наращивания мощности двигателя. О тметим, что прямой привод неприменим для центробежных нагнетателей. Их приходится устанавливать вместе с редуктором.
Устройство и некоторые особенности центробежного нагнетателя описываются самим названием этого агрегата. Для интенсификации наддува крыльчатка компрессора должна вращаться с как можно более высокой скоростью. Говоря простым языком, нагнетаемое давление будет пропорционально квадрату скорости самой крыльчатки. Как читатель наверняка догадался, для центробежных нагнетателей характерен турболаг , хотя он и не столь заметен, как у более распространенных турбин. Работающий на пике своих возможностей компрессор производит много шума. Несмотря на недостатки, устройство может похвастать существенными плюсами: доступная цена, простота в установке и относительная простота в обслуживании.
Подробнее о нагнетателях объемного типа
Главной особенностью нагнетателей объемного типа является постоянство объемного КПД . Эффективность данных устройств зависит от оборотом нагнетателя и оборотов двигателя соответственно. Объемные нагнетатели гарантируют увеличение мощности двигателя как на низких, так и на средних оборотах. В зависимости от конструктивных особенностей и типа привода они подразделяются на:
- Поршневые компрессоры;
- Поршневые с переменным рабочим объемом;
- Роторно-пластинчатые компрессоры;
- Спиральные компрессоры;
- Винтовые компрессоры;
- Нагнетатели объемные типа
Эталоном объемных нагнетателей являются агрегаты типа Roots. Они достаточно просты и надежны. Их основными элементами является пара роторов со специфическим профилем, расположенных на паре осей и связанных шестернями. Особенность таких компрессоров в том, что они сжимают воздух в нагнетательном трубопроводе, а не в основном тракте. По этой причине их еще называют нагнетателями с внешним сжатием. Выделяют такие циклы работы агрегата:
- Фаза впуска (расширение);
- Перемещение;
- Сжатие (выдавливание).
Как только начинается фаза сжатия, между парой роторов создается область пониженного давления, которая расширяется по ходу вращения роторов. Вследствие разрежения компрессор всасывает большие объемы воздуха, которые, ударяясь о лопасти, сжимаются и сталкиваются с новыми порциями воздуха. Вследствие этого в компрессоре наблюдается турбулентность и просачивание воздуха при высоких оборотах. Это отрицательно сказывается на КПД агрегата, хотя агрегат продолжает неплохо показывать себя на низких и средних оборотах. К слову, именно турбулентность является причиной нагрева компрессоров типа Roots, которые в обязательном порядке оснащаются интеркулером.
Концептуальные похожие на компрессоры типа Roots, винтовые компрессоры Линсхольма создают множество камер, на выходе из которых воздух проталкивается к двигателю. Именно за счет использования громоздких винтов вместо компактных роторов такие нагнетатели обеспечивают равномерный подвод больших объемов воздуха и не страдают от сильного перегрева. Также у них нет внешнего сжатия и они не страдают от эффектна турбулентности, что положительно сказывается на эффективности работы агрегата по всему диапазону оборотов двигателя. Обратная сторона медали: наличие небольших зазоров между лопастями. На современном оборудовании можно изготовить идеально прилегающие друг к другу винты, однако конечный продукт оказывается слишком дорогим для рядовых автолюбителей.
Что же выбрать
Выбирая между механическим нагнетателем и обычной турбиной , многие автолюбители отдают предпочтение второй. Это объясняется большим сроком службы, относительно простым обслуживанием и неплохим приростом мощности на широком диапазоне оборотов (особенно на высоких оборотах). Однако здесь стоит отметить следующее:
- Компрессор увеличивает объем топливовоздушной смеси, тем самым позволяя реализовывать полную мощность двигателя заданного объема. Нагнетатель не нуждается в установке дорогостоящего коллектора и массе сложных доработок – только в минимальных;
- Большинство компрессоров просты в установке – с этой работой могут справиться практически все СТО.
При этом полезный КПД подавляющего большинства механических нагнетателей падает по мере увеличения отнимаемой от двигателя мощности. В случае турбин ситуация обратная. Также нагнетатель не понижает расход топлива. Многие автолюбители сходятся на том, что турбина является более универсальным агрегатом . Если же автолюбитель решился на установку механического нагнетателя, ему стоит учитывать следующее:
- Центробежные компрессоры дают стабильную прибавку мощности (особенно на высоких оборотах), но из-за своей геометрии их не всегда получается уместить под капотом авто. Проблема отчасти компенсируется тем, что агрегат можно установить на некотором отдалении от впускного коллектора;
- Выбирая объемным нагнетатель, стоит отдавать предпочтение агрегатам с переменным рабочим объемом – они наиболее универсальны и имеют приемлемую геометрию. Также хороши винтовые компрессоры, но они несколько крупнее. Прибавка мощности может оказаться не слишком впечатляющей.
Сразу отметим, что в выборе подходящего компрессора много нюансов. Вот например: эффективность центробежного компрессора зависит от оборотов двигателя, но вследствие высокого КПД он дает ощутимую прибавку мощности даже на малых оборотах, однако полностью раскрывает свой потенциал на высоких. Нагнетатели объемного типа дают хорошую прибавку мощности прямо с холостых, что делает их отличным вариантом как для тяжелых автомобилей (универсалы, кроссоверы), так и коммерческого транспорта. Итого: центробежные – скорее для высоких оборотов, в меньшей степени для низких; объемные – скорее для низких, в меньшей для всех остальных.
Вывод
По ходу поиска механического нагнетателя автолюбителям обычно приходится выбирать между центробежными и объемными компрессорами. Их применяемость указывается в характеристиках агрегата. Однако на всякий случай автолюбителю стоит обратить внимание на характеристику давления наддува и соотнести ее с показателями из таблицы степеней сжатия (эту информацию можно найти в сети). Правильно подобранный нагнетатель практически не влияет на эксплуатационный ресурс двигателя, однако мы все же советуем проверить систему охлаждения силового агрегата, сцепление. После установки нагнетателя рекомендована более частая проверка состояния масла и четкое соблюдение регламентов замены топливного и воздушного фильтров. Если вы планируете установку более мощного агрегата, то вам может потребоваться замена распредвала, водяной помпы, коллектора, клапанной крышки, свечей зажигания, рокеров, поршней, впускных и выпускных клапанов.
Особенности применения разных типов нагнетателей
Компрессор. Сколько восторженных взглядов порой притягивает этот серенький девайс рядом с двигателем даже несмотря на то, что под капотом любого современного автомобиля есть узлы куда более сложные, высокотехнологичные и, как принято нынче говорить, навороченные! И все же при всей простоте и очевидности принципа работы этого прибора многие по-прежнему путаются в многообразии его вариантов. Какие из них вообще можно называть компрессорами! Чем они отличаются от нагнетателей? Ответ прост: ничем.
И компрессор, и нагнетатель — это любое устройство, предназначенное для увеличения давления воздуха. Даже турбокомпрессор (он же турбонагнетатель) – это тоже компрессор, хоть и с приводом от газовой турбины. Ну а супер-, турбо- и другие — всего лишь иностранные синонимы наших терминов. И по большому счету все эти «рутсы», «лисхольмы» и «компрексы» делают одну и ту же работу — сжимают воздух во впускном коллекторе двигателя, резко увеличивая его отдачу. Впрочем, делают они ее все-таки по-разному.
И когда мы решаем вопрос, какой именно нагнетатель наилучшим образом подходит нашему автомобилю, эти различия становятся для нас весьма существенными. Какие здесь возможны варианты? Конечно, самые простые (и по устройству, и в установке на двигатель) — это компрессоры с приводом от коленчатого вала. Абсолютным же рекордсменом по простоте можно, пожалуй, назвать приводной центробежник. Он, кстати, есть почти в любом серийном моторе — в виде помпы, которая перекачивает жидкость в системе охлаждения. Если мы вздумаем поставить подобную помпу во впускной тракт, ее придется сделать достаточно большой (особо мощные двигатели ежеминутно потребляют десятки килограммов воздуха), но принцип работы сохранится: рабочее тело (то есть воздух) попадает на вращающееся с большой скоростью колесо с лопатками и отбрасывается к его периферии. Здесь корпус-улитка собирает этот веерообразный поток в один патрубок, откуда он и отправляется в дальнейшее путешествие по интеркулерам, коллекторам и цилиндрам.
Насколько хорошо работает такая система?
Этот нагнетатель, обладающий высоким КПД (у лучших образцов он достигает 80%!), способен развивать значительное давление наддува и не требует чрезмерных затрат энергии на собственные нужды. Недостаток у него лишь один, но весьма серьезный — эффективность зависит от частоты вращения его колеса, а значит, и коленвала, с которым оно связано через редуктор с постоянным передаточным отношением. И зависимость эта, как говорят математики, существенно нелинейна: при увеличении оборотов, скажем, на двадцать процентов, давление наддува (а с ним и крутящий момент двигателя!) может вырасти раза в полтора. Соответственно, при снижении оборотов тяга так же быстро упадет, что субъективно воспринимается как полное ее исчезновение.
Означает ли это, что для автомобильных двигателей центробежный компрессор совершенно не годится?
Ни в коем случае! Дело в том, что такой недостаток этих нагнетателей квалифицированный установщик может превратить в достоинство. Представьте себе мотор, имеющий «низовые» настройки, — с узкими фазами, небольшим перекрытием клапанов (забегая чуть вперед, заметим, что это вообще идеальный вариант для форсировки наддувом любого типа), длинными коллекторами. Крутящий момент здесь может быть весьма большим, и его максимум, как правило, смещен в зону малых оборотов. Зато и кривая мощности у подобных агрегатов начинает загибаться очень рано — при 5000 об/мин и ниже.
Вот такой, казалось бы, вялый двигатель можно очень легко оживить при помощи точно подобранного центробежника. Если передаточное число привода (обычно оно определяется диаметрами приводных ремней) подстроить так, чтобы на оборотах, где естественное наполнение идет на спад, вдруг начинался резкий рост давления наддува, то крутящий момент продолжил бы расти и дальше. Правда, отодвинется ближе к правой части шкалы тахометра, но будет значительно выше. Естественно, вырастет и мощность.
Центробежник — штука выносливая, но он очень не любит работать на запертый выход, то есть при маленьких расходах воздуха и больших давлениях наддува. И бездумно уменьшая диаметр шкива на компрессоре (его обороты от этого увеличиваются), можно доиграться до помпажа, который сопровождается резким падением давления и хлопками. Кстати, с подобным явлением сталкиваются и некоторые особо забывчивые, пренебрегающие установкой blow off-клапана (это такое Expottereo, которое стравливает воздух с выхода компрессора на его вход при закрытии дроссельной заслонки). Без него первый же сброс газа на больших оборотах может привести к своеобразному короткому замыканию.
Если говорить о двигателе, то неприятные для него последствия — по другую сторону графика. Предположим, мы заставили компрессор хорошо „дуть“ в нижнем диапазоне оборотов и при этом не вывели его за границы устойчивой (без помпажа) работы. Но ведь развиваемое им давление прогрессивно (и, можно сказать, почти безгранично) увеличивается по мере раскрутки. Если не принять меры, то не исключен овербуст, детонация (весьма опасная на больших оборотах и давлениях!) и разные другие неприятности вплоть до разрушения поршней и шатунов.
Вот для приводных нагнетателей объемного типа (например, Roots или Lysholm) такая опасность практически исключена благодаря их замечательной линейности — каждому обороту вала соответствует строго определенное количество воздуха. Примерно постоянным, не зависящим от оборотов будет и давление. С приемлемой для практики точностью можно сказать, что его величина однозначно задается диаметром приводных шкивов, а уж их выбирают, исходя из типа компрессора. Например, компрессоры Roots, которые не умеют сжимать воздух в своих недрах, а только проталкивают его по прогонной части.
Но не зря говорят, что недостатки — это продолжение достоинств. Большое давление, которое развивают объемные нагнетатели на малых оборотах, здорово помогает при интенсивном разгоне на полном дросселе. Здесь оно обеспечивает отменное, очень ровное и длительное ускорение. А если мы отпустим педаль и захотим прокатиться не спеша, в экономичном режиме? Сэкономить помешает компрессор, который будет тратить значительную часть мощности двигателя на трение лопастей о корпус и бесполезное проталкивание сжатого воздуха через прикрытую дроссельную заслонку. Поэтому системы такого типа, как правило, делают отключаемыми при помощи специальной муфты сцепления.
Этого недостатка начисто лишены нагнетатели центробежные. Да, на малых оборотах развиваемое ими давление невелико, но и потери минимальны. Кстати, такое качество центробежников широко используется в поршневых авиационных моторах.
На взлетном режиме, когда мощность важнее экономичности, компрессор работает в полную силу. Но стоит лишь чуть уменьшить обороты, как избыточный наддув тут же пропадает, свободно вращающееся колесо нагнетателя почти не создает излишнего противления и практически не повышает аппетит двигателя. Несмотря на то, что в чистом виде на автомобилях она встречается не так уж и часто. Если вал центробежного компрессора соединить с турбиной, то получится турбонагнетатель. Именно этот прибор сегодня устанавливается на автомобили с наддувными двигателями.
Что можно сказать о системах такого типа? В первую очередь, наверное, что „турбо“ — это тема! Благодаря турбонаддуву мы можем добиться чрезвычайно высокого уровня форсировки, неплохой экономичности и получить двигатель, обладающий практически любым необходимым нам характером. Но прежде чем рассматривать особенности работы турбомоторов, уместно поговорить о том, что же такое хорошо подобранный нагнетатель. То, что прибор должен быть надежным и качественным, это понятно. Очевидно и то, что его КПД должен быть близким к максимально возможному — во всяком случае, на наиболее часто используемых скоростях и режимах.
По каким параметрам можно судить о пригодности компрессора для того или иного автомобиля?
Их много, но чтобы выделить самый главный, достаточно вспомнить принципы работы двигателя. Казалось бы, что общего между скромной 1,5- литровой „четверкой» компактного хэтчбека и 12-цилиндровым произведением искусства под капотом BMW или Ferrari? Эти агрегаты разительно отличаются и объемом, и мощностью, и оборотами, при которых она достигается. Буквально всем! Но есть и сходства. Во-первых, разные моторы одного поколения имеют близкий механический КПД.
То есть на трение колец и подшипников мы тратим примерно одинаковое количество процентов от полезной работы газа в цилиндрах. Во-вторых, эта самая работа, выполняемая каждым килограммом смеси воздуха и топлива, строго зависит от степени сжатия и температуры сгорания. Последняя же при нормальных регулировках системы питания почти идентична как для двигателя мопеда, так и для агрегата от болида Формулы 1. А это значит, что практически одинаковой будет и мощность на коленвале, развиваемая этим килограммом воздуха в смеси с топливом.
Все это вместе взятое имеет очень важные последствия. Оказывается, компрессору все равно, сколько клапанов, цилиндров и литров рабочего объема имеет мотор. Главное, чтобы он расходовал нужное количество воздуха, что, как мы выяснили, соответствует совершенно определенному количеству лошадей.
Выходит, что кроме оптимального давления для нагнетателя, по большому счету, важна лишь мощность, которую мы рассчитываем получить от надутого им двигателя. То есть если мотор нашей Лады под избыточным давлением 0,6 кг/см2 будет развивать 150 л. с. (а он на это вполне способен!), то турбокомпрессор КОЗ от популярных 150-сильных „Фольксвагенов» и „Ауди“ с шильдиком 1,8 Turbo на корме нам придется впору. Пусть наш агрегат выдаст эту мощность на чуть больших оборотах (объем-то меньше!), но все будет работать как надо: режимы нагнетателя будут точно такими же, как и у автомобиля-донора. Конечно, этим вариантом спектр возможностей не ограничивается. Но золотое правило работает почти в любом случае: если совпадают давление наддува и расходы воздуха, то компрессор нам, скорее всего, подойдет. Первый параметр можно измерить на оборудованном им живом моторе (или выяснить у тех, кто это делал), а второй определяется мощностью, которую легко узнать из каталога.
Остается выполнить лишь одно условие. Планируемое нами давление должен спокойно выдерживать двигатель. И если оно достаточно большое, то не обойтись без уменьшения степени сжатия — иначе возможна детонация. Для решения этой проблемы, как правило, приходится изменять и настройки системы управления, которая вдобавок должна обеспечивать форсированный мотор положенным объемом топлива.
Источник Источник http://fastmb.ru/soveti_auto/3372-kak-rabotaet-turbo-nagnetatel-vozduha-v-avtomobile.html
http://avto.pro/autonews/kak_ustroen_mehanicheskiy_nagnetatel-20200628/
Источник Источник Источник Источник http://bycars.ru/journal/osobennosti-primeneniya-raznih-tipov-nagnetateley_1850