Почему Komatsu использует в линейке два вида трансмиссии: гидростатическую и гидромеханическую
Почему Komatsu использует в линейке два вида трансмиссии: гидростатическую и гидромеханическую
Какой должна быть трансмиссия бульдозеров: гидростатической или гидромеханической? Какая из них удобнее в работе, для каких целей? Это один из давних споров между пользователями и даже между производителями техники. Komatsu решила этот спор, использовав в линейке бульдозеров оба варианта, но в технике разного назначения. И вот почему.
Для начала сравним, как работают обе системы.
Гидромеханическая трансмиссия — это гидротрансформатор плюс обычная шестеренчатая коробка передач. Автоматическая, как на бульдозерах Komatsu 16-й серии, или с переключением в ручном режиме, как на бульдозерах 12-й серии. Ключевой элемент — гидротрансформатор, который преобразует и увеличивает тягу относительно тяги, которую выдает двигатель. Например, если двигатель выдает 100 Н·м, то на выходе из турбинного колеса получаем тягу до 240 Н·м. Это огромный плюс гидромеханики, но в этом и ее проблема. Такой режим трансформации достигается только при высокой степени пробуксовки гидротрансформатора, когда турбинное колесо стоит, а насосное очень быстро крутится. При этом возникают внутренние потери на трение жидкости внутри гидротрансформатора, резко снижается КПД. Зато тяга максимальна.
В гидростатике два ключевых элемента: насос, который преобразует энергию двигателя в движение жидкости, и гидромотор, который приводит в движение гусеницы. Гидротрансформатора нет, то есть тяга меньше, зато выше КПД.
Из этого следует разница в назначении машин с этими типами трансмиссии.
Бульдозеры с гидромеханикой — это инструмент для тяжелых работ, где требуется высокая тяга. В первую очередь это горная промышленность, работа в карьерах. Максимальная тяга часто полезна и для тяжелых строительных работ, например при подготовке площадок для кустовых месторождений, то есть при работе на мерзлом грунте. Это бульдозеры Komatsu D65EX-16, D155A-5, D275A-5, D375A-6.
Тяжелый бульдозер Komatsu D375A-6 трудится на известняковом карьере в Дании
Ниша бульдозеров на гидростатике — дорожные и коммунальные работы. Специфика задач в этих видах деятельности требует максимальной маневренности и экономичности техники. При постоянных передвижениях с относительно малой нагрузкой себестоимость работы техники на гидростатической трансмиссии будет ниже, например из-за меньшего расхода топлива. Поэтому модели Komatsu для строительства дорог и городских работ оснащены насосами и гидромоторами. Это D39EX/PX-22 и D37EX/PX-22.
Но есть модель, техническое решение которой вызывает самые бурные обсуждения как минимум потому, что это самая распространенная, популярная модель в линейке бульдозеров Komatsu. Это D65-16 в спецификациях EX/PX/WX.
Двадцатитонный D65 — универсал. Он популярен у строителей в нефтегазовой сфере, его можно встретить на песчаных, щебеночных и угольных карьерах, его используют в дорожном строительстве и даже порой на крупных городских проектах. Причем часто, если у компании — владельца техники есть сразу несколько проектов, бульдозер переводят с одной задачи на другую и он продолжает эффективно трудиться. Например, из карьера — на строительство дороги. И в D65 стоит гидромеханическая коробка передач.
Часть стандартных работ, где обычно задействован «шестьдесят пятый», — это именно те работы, про которые выше говорилось, что на них чаще используют технику с гидростатикой. Вот, например, видео, где на дорожных работах бок о бок трудятся Komatsu D65EX-12 с гидромеханической коробкой передач и машина примерно этого же класса от другого производителя (на гидростатике).
Бульдозер Komatsu D65EX-12 на дорожных работах рядом с машиной на гидростатике
Давайте обозначим критерии, по которым можно сравнить эффективность эксплуатации на схожих задачах машин с разными типами трансмиссии:
- производительность
- экономичность в работе
- надежность
- ремонтопригодность
- затраты на эксплуатацию
Производительность бульдозеров
На вскрыше скальной породы гидромеханика однозначно полезнее гидростатики. На задачах, где не требуется максимальное тяговое усилие, у гидростата с замкнутым контуром значительно выше КПД за счет меньших потерь энергии. Эксплуатанты отмечают и большую управляемость: бульдозер может поворачивать во время перемещения грунта. Но это могут делать и бульдозеры на гидромеханике с гидросистемой поворота HSS, например D65EX-16.
Экономичность
При цикличных перемещениях с коротким плечом гидростатика выигрывает.
При постоянном движении с определенной скоростью гидромеханика оказывается экономичнее.
Ресурс трансмиссии и общая надежность техники
Гидростатическая трансмиссия — более сложная система. Если просто сравнить ресурс насоса и гидротрансформатора,- последний оказывается более надежным. Но все зависит от производителя, оператора и механиков. Качественный гидронасос при грамотной эксплуатации и профессиональном сервисе полностью отрабатывает свой ресурс, как и гидротрансформатор.
Но в сложных условиях бульдозер на гидромеханике будет трудиться без помех, тогда как к гидростату придется относиться с большой осторожностью или вовсе нельзя будет работать на технике с ним.
Например, если речь о работе на горячем шлаке, то ходовой мотор может просто загореться вместе со всеми горючими жидкостями, которые он прокачивает.
А в эксплуатации при низких температурах гидромеханике нужно меньше времени для подготовки к работе, нет нужды трепетно соблюдать ритуал прогрева, ей не так страшны частые остановки двигателя на час-другой.
Гидросистема ходовой части очень требовательна к использованию низкотемпературных гидравлических жидкостей, и ее обязательно нужно прогреть перед движением. Если в сильный мороз это не сделать, а завести и сразу тронуть бульдозер с места, можно повредить сальники на валах насоса и мотора, гидрошланги и т. д.
Ремонтопригодность
Компоненты гидростата легче и быстрее заменяются хотя бы потому, что они меньшего размера, чем компоненты на механике. Если запчасти под рукой, склад близко или вообще на участке (на крупных проектах с сервисной поддержкой от дистрибьютора), то в среднем ремонт занимает одну смену. Из этого времени сама работа с гидронасосом или гидромотором — это 2–3 часа. С гидромеханикой процесс замены компонентов ощутимо тяжелее и дольше.
Затраты на эксплуатацию (включая ТОиР)
Гидротрансформатор и его КПП до ремонта служат дольше, чем гидромотор с гидронасосом. Хотя бы потому, что они менее требовательны к правильной эксплуатации, более неприхотливы. Ресурс компонентов у гидростата меньше, покупать и менять компоненты нужно несколько чаще. Так что, если сравнивать расходы за один и тот же промежуток времени, получается паритет между двумя системами.
Гидростатика vs гидромеханика: финальный подсчет
Сравнение трансмиссий | Гидромеханика | Гидростатика |
---|---|---|
Производительность | Максимальное тяговое усилие, низкий КПД | Большая управляемость, маневренность, высокий КПД |
Экономичность | Большее потребление топлива | Меньшее потребление топлива |
Ресурс и общая надежность | Более простая система, ресурс больше, неприхотлива в эксплуатации | Более сложная система, ресурс меньше, требовательна к эксплуатации и сервису, особенно при низких температурах |
Ремонтопригодность | Компоненты тяжелее, их физически сложнее и дольше заменять, ремонт и замена длятся дольше | Компоненты легче, их быстрее заменять, ремонт и замена длятся меньше |
Затраты на эксплуатацию | Служит дольше | Служит меньше |
Резюмируем: в стоимости обслуживания и ремонта, в сложности этих процедур у гидростатики и гидромеханики примерный паритет, достоинства и недостатки обоих систем уравновешивают друг друга, если сравнивать эксплуатацию за более-менее продолжительный срок. Ключевая разница — в применении бульдозеров с этими системами: экономичность и высокий КПД против максимальной тяги и неприхотливости. Соответственно, выбор техники с тем или иным типом передачи крутящего момента двигателя зависит от задач владельца. Для тяжелых условий, для максимальных показателей по производительности и экономичности — однозначно, гидромеханика. Для более щадящей работы — гидростатика.
Это касается и «пограничного» случая с D65: если у компании задачи связаны в основном с городским и дорожным строительством, есть смысл выбрать более легкие модели D39 или D37 с гидростатической трансмиссией. Тем, кто работает на месторождениях, на Севере, прокладывает нефте- и газопроводы, для работы в карьерах может быть удобнее более неприхотливый и мощный D65. Также D65 с его гидромеханикой предпочтительнее для проектов, где много работы для рыхлителя.
Тем, кто совмещает разные типы работ, также есть смысл использовать технику на гидромеханике: она может оказаться менее экономичной на легких задачах, но вытянет там, где не справится бульдозер на гидростате.
Что такое трансмиссия и как она работает — фото видео.
Когда каждый человек еще в детстве начинает интересоваться автомобилями, он изучает не только марки и моделей машин, но и устройство автомобиля. Одним из главных агрегатов автомобиля является трансмиссия, которая состоит из множества более мелких узлов и агрегатов. В данной статье мы расскажем всем интересующимся молодым автомобилистам, что такое трансмиссия в автомобиле.
Определение понятия «трансмиссия»
Согласно научным изданиям машиностроения, трансмиссия – это совокупность механизмов и сборочных единиц, которые соединяют двигатель с ведущими колесами, в данном случае, автомобильного транспорта, а также совокупность системы, которая обеспечивает работу трансмиссии.
Трансмиссия является совокупностью агрегатов и узлов, которые передают крутящий момент от мотора к ведущим колесам, при этом могут изменяться тяговые усилия, скорость и направление движения. Автомобильная трансмиссия включает в себя механизмы, которые в науке относят к составу силового агрегата – это коробка передач и сцепление.
Назначение и схемы трансмиссий
Назначение. Трансмиссия автомобиля служит для передачи крутящего момента от двигателя к ведущим колесам. При этом передаваемый крутящий момент изменяется по величине и распределяется в определенном соотношении между ведущими колесами.
Крутящий момент на ведущих колесах автомобиля зависит от передаточного числа трансмиссии, которое равно отношению угловой скорости коленчатого вала двигателя к угловой скорости ведущих колес. Передаточное число трансмиссии выбирается в зависимости от назначения автомобиля, параметров его двигателя и требуемых динамических качеств.
В трансмиссию входят:
- сцепление,
- коробка передач,
- карданная передача,
- главная передача, устанавливаямая в картере ведущего моста,
- дифференциал
- полуоси.
Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.
Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.
Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.
Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.
Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).
Трансмиссии по способу передачи крутящего момента разделяют на механические, гидравлические, электрические и комбинированные (гидромеханические, электромеханические). На отечественных автомобилях наиболее распространены механические трансмиссии, в которых передаточные механизмы состоят из жестких недеформируемых элементов (металлических валов и шестерен). На автобусах Ликинского и Львовского заводов, а также на большегрузных автомобилях БелАЗ применяют гидромеханические трансмиссии с автоматизированным переключением передач. Часть большегрузных автомобилей БелАЗ имеют электромеханическую трансмиссию с моторколесами.
Схема трансмиссии автомобиля. Она определяется его общей компоновкой: размещением двигателя, числом и расположением ведущих мостов, видом трансмиссии.
Схемы трансмиссий:
а — автомобиля 4X2, б — переднеприводного автомобиля 4X2, в — автомобиля 4X4, г — автомобиля 6X4
Автомобили с механической трансмиссией и колесной формулой 4X2 имеют чаще всего переднее расположение двигателя, задние ведущие колеса и центральное размещение агрегатов трансмиссии (автомобили ЗИЛ-130, МАЗ-5335, ГАЗ-24 и др.). Здесь двигатель 1, сцепление 2 и коробка передач 3 (рис. а) объединены в один блок и образуют силовой агрегат. Крутящий момент от коробки передач 3 передается карданной передачей 4 на ведущий задний мост 5.
Существенные отличия имеет трансмиссия переднеприводного автомобиля ВАЗ-2108 с колесной формулой 4X2 (рис. 6). Особенностью этой схемы является выполнение ведущим переднего моста с управляемыми колесами. Это потребовало объединения в единый силовой агрегат двигателя 1, сцепления 2, коробки передач 3, механизмов ведущего моста 5 (главную передачу и дифференциал), карданных шарниров 6 равных угловых скоростей, соединенных с передними управляемыми колесами.
На (рис. в) представлена схема трансмиссии автомобиля с передним и задним ведущими мостами (автомобиль УАЗ-469). Отличительной особенностью этой схемы является применение в трансмиссии раздаточной коробки 7, которая через промежуточные 9 карданные валы передает крутящий момент переднему 8 и заднему 5 ведущим мостам. В раздаточной коробке имеется устройство для включения и выключения переднего моста и дополнительная понижающая передача, позволяющая значительно увеличить крутящий момент на колесах автомобиля в необходимых случаях.
Схема механической трансмиссии трехосных грузовых автомобилей КамАЗ представлена на (рис. г). На этих автомобилях средний 10 и задний 5 мосты являются ведущими. Крутящий момент к ним передается одним карданным валом 4, а в главной передаче среднего моста предусмотрен межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал 11 привода заднего моста. В других схемах трансмиссий трехосных автомобилей передача крутящего момента к ведущим мостам может производиться раздельно карданными валами от раздаточной коробки (автомобиль Урал-375).
Схемы гидромеханических трансмиссий предусматривают объединение в едином блоке двигателя и гидромеханической коробки передач, крутящий момент от которой передается ведущим колесам через карданный вал и механизмы заднего моста как в обычной механической трансмиссии.
На автомобилях (БелАЗ) с электромеханической трансмиссией дизельный двигатель приводит во вращение генератор постоянного тока, энергия от которого передается по проводам в электродвигатели колес. Колесный электродвигатель монтируют в ободе колеса совместно с понижающим механическим редуктором. Такая конструкция называется электромотор-колесом.
Классификация трансмиссий
Рассмотрим классификацию трансмиссий.
По методам передачи и преобразованию момента трансмиссии подразделяются на электромеханические, механические и гидромеханические.
Механическая трансмиссия
Трансмиссии механического типа (обычные и планетарные) в КПП содержат только фрикционные и шестеренчатые устройства. Преимущества их заключаются в коэффициенте полезного действия, небольшой массе и компактности, простоте в эксплуатации и надежности в работе. Недостаток трансмиссии такого типа – ступенчатость изменения передаточных чисел, понижающая использование мощности силового агрегата. Длительное время на переключение рычагом передач усложняет управление автомобилем. Именно поэтому спортивные автомобили, оснащенные механической трансмиссией, снабжают электронными переключателями передач (кнопками на рулевом колесе, подрулевыми лепестками) и КПП со сверхбыстрыми синхронизирующими сервомеханизмами.
Использование трансмиссий механического типа свойственно советскому тракторостроению.
Гидромеханическая трансмиссия
Трансмиссии гидромеханического типа оснащены гидромеханической КПП, которая состоит из механического редуктора и гидродинамического преобразователя момента. Преимущества таких трансмиссий заключаются в возможности автоматизации смены передачи и облегчении управления, автоматическом изменении крутящего момента на основе внешних сопротивлений, фильтрации крутильных колебаний и уменьшении пиковых нагрузок, действующих на агрегаты трансмиссии, и увеличении за счет этого долговечности и надежности трансмиссии поршневого мотора.
Главный недостаток таких трансмиссий – достаточно низкий коэффициент полезного действия из-за недостаточно большого КПД гидротрансформатора. Если КПД гидропередачи не меньше 0.8, диапазон изменения крутящего момента не выше трех, что заставляет иметь механический редуктор на 3-5 передач, включая передачу заднего хода. Необходимо располагать специальной системой охлаждения, а также подпитки гидроагрегата, что увеличивает габаритные размеры моторно-трансмиссионного отдела. Без фрикционов или специальных автологов пуск двигателя с буксира и торможением двигателем не обеспечивается.
Трансмиссии гидромеханического типа активно применяются в западном тракторостроении – «Леопард-2» (ФРГ), М1 «Абрамс» (США). В трансмиссиях перечисленных танков в основном приводе, кроме гидромеханических передач, также применяются в дополнительном приводе гидростатические передачи для выполнения поворота. Гидромеханической передачей оснащен дизель-поезд под названием Д1 венгерского производства, работающий на постсоветском пространстве ЖД-техники.
Гидравлическая трансмиссия
Трансмиссией гидравлического типа в транспортной технике является такая трансмиссия, в которой переключения осуществляются не механическим методом, а гидравлическими аппаратами, т.к. чисто гидравлические трансмиссии встречаются довольно редко. Трансмиссия такого типа оборудована КПП с вторичным и первичным валами, а также, как и в обычной КПП, несколькими парами зубчатых колес, но включение необходимой пары в рабочий процесс выполняет не фрикционная или кулачковая муфта, а гидромуфта или же гидротрансформатор, который заполняется для включения передачи.
Главное достоинство трансмиссии такого типа – включение передач совершенно безударное и полное отсутствие механических муфт, стабильно работающих в процессе передачи больших крутящих моментов (к примеру, на тепловозах), главный минус – необходимость монтажа отдельной гидромуфты для каждой передачи. Из-за своих особенностей гидропередача применяется в основном на железнодорожной технике. Из отечественных разновидностей техники гидропередачей оснащены, к примеру, дизель-поезд ДР1, маневровые тепловозы ТГМ6 и ТГМ4.
Гидростатическая трансмиссия
В трансмиссии гидростатического типа для передачи мощности применяется аксиально-плунжерные гидромашины. Преимущества данной трансмиссии – небольшая масса и габариты машин, отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, благодаря чему удается разносить их на достаточно значительные расстояния и придавать гораздо большее число степеней свободы. Главный минус гидрообъемной передачи – высокие требования к чистоте жидкости, участвующей в рабочем процессе, а также повышенное давление в гидролинии.
Гидростатическая передача применяется на дорожно-строительных машинах (в основном в катках, так как там необходимо обеспечивать достаточно большое передаточное число, а также очень часто приводить вальцы с торца, затруднено построение механической передачи), как вспомогательная – в авиационной технике, металлорежущих станках, тепловозах.
Электромеханическая трансмиссия
Трансмиссии электромеханического типа состоят из тягового электромотора (или нескольких), электрического генератора, электрической системы контроля, а также соединительных кабелей. Главным достоинством трансмиссий электромеханического типа является обеспечение более широкого диапазона автоматического изменения силы тяги и крутящего момента, а также отсутствие кинематической жесткой связи между механизмами электротрансмиссии, что дает возможность создать разные компоновочные схемы.
Главными минусами, которые препятствуют распространению трансмиссий электрического типа, являются большая масса, габариты и цена (особенно если применяются электромашины постоянного тока), меньший КПД (по сравнению с механической). Но с развитием электротехнической промышленности, широким распространением индукторного, вентильного, синхронного, асинхронного и других разновидностей электропривода открывается все больше новых возможностей для электромеханических трансмиссий.
Данные трансмиссии широко используются в тепловозах, тракторах, карьерных самосвалах, морских судах, военной технике, самоходных механизмах, немецких военных машинах «Мышонок» и «Фердинанд», а также автобусах, которые с трансмиссией этой разновидности более правильно называются теплоэлектробусы, к примеру, ЗИС-154.
На современных автомобилях, по большей части, используется трансмиссия механического типа. Трансмиссия механического типа, в которой изменение крутящего момента происходит в автоматическом режиме, называется автоматической трансмиссией.
На этом классификацию трансмиссий можно считать рассмотренной.
Трансмиссия автомобиля Принцип работы трансмиссии
Урок 6 — трансмиссия, виды коробок передач, механическая, автоматическая, типтроник, вариатор
Что такое гидромеханическая коробка передач
Одним из элементов системы управления автомобилем является гидромеханическая трансмиссия. Благодаря ей водитель может переключать передачи плавно и без рывков. Гидромеханическая коробка передач — что это такое? Давайте разберемся.
Гидромеханическая коробка передач
Роль АКПП с гидромеханическим управлением
Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП. «Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения. В классических коробках при управлении автомобилем выполняются следующие процессы:
- отключение трансмиссии от двигателя в момент смены передач;
- при изменении дорожных условий изменение величины крутящего момента.
Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.
Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.
Разновидности гидромеханики
В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:
- многовальной;
- двухвальной;
- трехвальной;
- планетарной.
Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.
Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло. Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала. Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.
НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.
Основное назначение АКПП
Функции гидротрансформатора
Гидротрансформатор выполняет функции сцепления в современных АКПП. Благодаря этому узлу автомобиль двигается с места плавно, без рывков. Динамические нагрузки при этом снижаются, что помогает эксплуатировать двигатель в щадящем режиме, повышая его долговечность. При применении гидротрансформатора части трансмиссии служат гораздо дольше. Водитель из-за снижения количества передач утомляется меньше. Гидротрансформаторы рекомендуется применять на внедорожниках, так как с их помощью можно увеличить проходимость автомобиля в тяжелых условиях – по снегу или песку.
Важно! В России также стоит выбирать трансмиссии с этим узлом, так как в зимнее время специальная техника часто не успевает прочищать дороги. Благодаря гидротрансформатору создается устойчивая сила тяги с небольшой скоростью вращения ведущих колес, что повышает их сцепление с дорожным покрытием.
Устройство гидротрансформатора
Размещают гидротрансформатор между двигателем и механической частью коробки. Он представляет собой соединенные между собой диски с лопастями. Первым идет насосное колесо, которое является ведущим. Оно связывает двигатель и трансформатор. Турбинное является ведомым, оно контактирует с первичным валом. За усиление крутящего момента отвечает реакторное. Турбины практически утопают в масле (погружены в него на три четверти). Их прикрывает корпус, защищающий от попадания в масло посторонних частиц. Во время работы турбины к насосному диску направляется усилие вращающего момента двигателя. Одновременно на турбинный диск направляется под давлением поток масла. Его раскручивает реакторное колесо, располагающееся в центральной части. Возникшее усилие передается на вал КПП.
Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя. Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.
Гидротрансформатор акпп в разрезе
Планетарный механизм
В большинстве современных АКПП гидротрансформатор действует в паре с планетарной системой. Она занимается передачей крутящего момента к фрикционным муфтам. В самом простом варианте усилие направляется на центральную шестерню (солнечную). Два дополнительных сателлита (вспомогательные шестерни) находятся в постоянной сцепке с центральной шестерней благодаря нанесенным на эти элементы зубчикам. Сателлиты не фиксируются, а свободно вращаются вокруг своих осей. Механизм шестеренок находится внутри коронного колеса, которое в зависимости от включенной передачи фиксируется или приходит в движение. В момент фиксации коронной шестерни начинает двигаться ведомый вал (на него передается усилие). В противном случае сателлиты передают момент на коронную шестерню, оставляя ведомый вал в неподвижном состоянии. Для переключения передач в планетарные АКПП устанавливаются фрикционные муфты. Каждая из них выглядит как несколько дисков, представляющих собой тонкие пластины из гладкого металла. Каждая пластинка покрыта специальным фрикционным составом, предотвращающим ее износ. На части их можно найти шлицы. Между муфтами расположены прокладки. Прижимаются друг к другу они при помощи гидравлического поршня, функционирующего при подаче рабочей жидкости. При возрастании в нем давления фрикционы плотно смыкаются, становясь почти единым целым. После падения давления жидкости в гидравлическом поршне фрикционные диски возвращаются на место с помощью пружины. Работа фрикционов тесно связана с функционированием тормозных и планетарных механизмов. На эти моменты передаются команды системы управления КПП и крутящий момент двигателя. Без их участия не производится торможение двигателем и запуск на буксире. Механический узел действует слаженно и четко.
Важно! В нейтральном положении выключаются фрикционы и тормозные механизмы. При разгоне и переключении передач фрикционы начинают действовать, а планетарные системы вращаются синхронно.
Электронная часть гидромеханической АКПП
Электронное управление необходимо для точности переключения передач в современных АКПП. Сейчас практически нельзя встретить трансмиссии, работа которых бы не поддерживалась электронными комплектующими. Они отвечают за:
- Функционирование АКПП. В гидромеханике эта система состоит из регуляторов давления и насосов.
- Сбор информации о действующей программе управления.
- Выработку импульсов управления.
- Исполнение команд при переключении передач.
- За защиту двигателя и трансмиссии в случае опасной ситуации.
- За ручное управление, за все операции отвечает блок, а управление происходит за счет рычага.
Электронная часть гидромеханической АКПП
Сильные и слабые стороны гидромеханики
Гидромеханическая коробка представляет собой последовательное соединение трансформатора, планетарного узла с фрикционами гидравлической системы управления. Ее основное достоинство – отсутствие необходимости водителю переключать передачи вручную. Электроника делает это точно, благодаря чему отсутствует дискомфорт при движении, а двигатель не подвергается перегрузкам. Их отсутствие помогает сохранить его в целости на долгое время. При начале движения передача мощности также происходит без прерывания и рывков, что делает гидромеханику более совершенной, превосходящей по своим характеристикам механические коробки передач. Не зря их используют не только в автомобилестроении, но и устанавливают на танки (в Америке и Германии).
Важно! Если вы выбираете автомобиль, на котором преимущественно будете двигаться по городу, то стоит выбирать именно гидромеханическую АКПП. С ее помощью у вас не возникнет неудобств при остановках в пробках или на светофорах.
Слабой частью такой АКПП является гидротрансформатор
Недостатком такого механизма является его высокая стоимость и техническая сложность. При переключении передач можно заметить потерю производительности за счет пробуксовки фрикционов и тормозных лент. Слабой частью такой АКПП является и гидротрансформатор, из-за которого теряется крутящий момент. Несмотря на явные преимущества эффективность гидромеханики по результатам замеров составляет 86%, тогда как у обычной коробки она достигает 98%. Еще один недостаток – необходимость устанавливать системы подпитки охлаждения гидроагрегата. Они занимают место под капотом, из-за чего моторно-трансмиссионный отсек имеет большие габариты. Также автомобили с установленной гидромеханикой нельзя завести путем толкания или перемещения его на тросе. Для этой разновидности коробки, как и во всех автоматах, характерно отсутствие возможности регулировать потребление топлива. Описанный вариант гидромеханической АКПП является одним из самых примитивных. Сегодня разрабатываются более совершенные трансмиссии, которые устанавливают на легковые автомобили, выпущенные в последние годы. Гидромеханикой рекомендуется пользоваться тем, кто недавно сел за руль. Для новичка она незаменима тем, что самостоятельно переключать передачи нет необходимости.
Источник Источник http://www.komek.ru/staty/pochemu-komatsu-ispolzuet-v-lineyke-dva-vida-transmissii-gidrostaticheskuyu-i-gidromekhanicheskuyu/
Источник http://seite1.ru/zapchasti/chto-takoe-transmissiya-i-kak-ona-rabotaet-foto-video/.html
http://akppgid.ru/vse-ob-akpp/gidromexanicheskaya-korobka-peredach.html