Как работает дизельный двигатель?

Как работает дизельный двигатель?

Автомобили с дизельными двигателями составляют почти половину от всего количества транспортных средств, ежегодно продаваемых как на официальных дилерских площадках, так и на вторичном рынке.

Силовые установки этого типа характеризуются экономичностью, значительной мощностью и динамикой. Такие агрегаты демонстрируют высокий крутящий момент и принципиально недоступный для бензиновых двигателей КПД (35%-35% у дизельных систем против 25%-35% у их аналогов). Эти преимущества, а также понизившийся уровень шума при эксплуатации и полное соответствие перманентно усложняющимся стандартам безопасности окружающей среды и обеспечили популярность дизелей как в легковом, так и в коммерческих классах транспортных средств.

Как происходит запуск дизельного двигателя?

Принцип работы дизельного двигателя следующий: в цилиндры поступает чистый воздух, который вследствие высокого сжатия нагревается до 700°С и более. После этого, при приближении поршня к верхней точке его траектории в камеру сгорания под давлением подается горючее, которое воспламеняется при контакте с горячим воздухом. Момент воспламенения сопровождается резким повышением давления в цилиндре. Такой принцип работы позволяет мотору работать на максимально обедненных смесях, что обеспечивает экономичность его эксплуатации.

Как работает дизельный двигатель?

Для холодного старта дизеля используется система предпускового нагрева, основным элементом которой являются свечи накаливания –нагревательные элементы, размещенные в камерах сгорания. Они позволяют за несколько секунд поднять температуру воздуха до требуемого значения. При включении системы в салоне загорается лампочка. Ее обесточивание свидетельствует о готовности двигателя к запуску. Подача электроэнергии к свечам прерывается автоматически, спустя 15сек – 25 сек после старта. Это условие позволяет обеспечить стабильную работу непрогретого агрегата. Современные системы данного типа делают возможным легкий запуск дизеля при температурах до -30°С при условии исправности мотора и использования масла и топлива соответствующей сезонности и качества.

Конструктивные особенности

Схема дизельного двигателя в целом повторяет механизм бензинового силового агрегата с той разницей, что аналогичные детали значительно усиливаются с учетом более высоких нагрузок. Поскольку воспламенение происходит в результате сжатия, из схемы исключаются компоненты системы зажигания, а свечи заменяются на элементы накаливания, не дающие искры и предназначенные для предварительного прогревания воздуха в камерах сгорания.

Характерной особенностью конструкции дизельного двигателя, связанной с самим принципом его работы, является геометрия днища поршней. Их форма определяется спецификой камеры сгорания. В верхней точке хода поршня, его днище оказывается выше самой крайней точки блока цилиндров. В некоторых случаях, в донышке поршня и располагается сама камера сгорания. От ее типа и реализованного способа подачи смеси и зависят технические и экологические характеристики конкретной модели дизельного двигателя.

Типы камер сгорания

В зависимости от их геометрии различают следующие виды камер сгорания.

Разделенные. В этом случае первичный впрыск горючего производится в отдельную полость, расположенную в головке блока. Такая технология позволяет снизить нагрузку на поршневую группу, а также значительно уменьшить шум от работы двигателя.

При этом процесс образования смеси может быть:

  • Форкамерным (предкамерным). Топливо под давлением поступает в предварительную камеру, соединенную с цилиндром несколькими каналами, где ударяется о ее стенки и таким образом смешивается с воздухом. После воспламенения смесь передается в основную камеру, где и дожигается полностью. Необходимый для максимально быстрого истечения газов через каналы перепад давления между цилиндром и форкамерой возникает в момент хода поршня на сжатие и на расширение.
  • Вихрекамерным. В этом случае первичное возгорание смеси также производится в отдельной камере, имеющей сферическую геометрию. В момент хода поршня на сжатие порция воздуха поступает в нее по соединительному каналу и интенсивно закручивается, образуя вихревой поток, за счет чего хорошо смешивается с горючим, поданным в определенный момент.

Характерными недостатками агрегатов с разнесенными камерами сгорания является усложненный запуск и повышенный расход топлива в связи с потерями при переходе порции воздуха в дополнительную камеру и обратного хода воспламененной смеси – в цилиндр.

Неразделенные. В этом случае горючее под давлением подается в цилиндр, а камерой служит полость, выбранная в донце поршня. В силу того, что такие агрегаты характеризуются повышенным уровнем шума и вибраций в процессе работы, особенно – при разгоне, до недавнего времени неразделенные агрегаты использовались на низкооборотистых моторах большого объема, предназначенных для коммерческого транспорта. Появление электронных систем впрыска позволило оптимизировать сгорание смеси в таких двигателях и значительно снизить уровень шума от их работы, что в свою очередь сделало неразделенные конструкции наиболее перспективным технологическим решением при проектировании новых типов силовых агрегатов.

Устройство топливной системы дизельного двигателя

Как работает дизельный двигатель?

Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.

Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:

  • Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
  • Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.

Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.

Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.

Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.

Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.

  • Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос. Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
  • Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.

Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.

Похожие статьи

SsangYong Kyron — среднеразмерный кроссовер (SUV) от южнокорейского производителя «SsangYong». Выпускается в полноприводной и заднеприводной модификациях. Комплектуется либо бензиновым, либо .

Устройство и виды топливных систем бензиновых и дизельных двигателей

Топливная система – важнейшая часть автомобиля, которая служит для подачи топлива из бака в камеру сгорания двигателя. Она состоит из множества элементов, предназначенных для транспортировки, фильтрации, учета, подготовки и отвода топлива. В статье подробнее рассмотрим топливные системы бензиновых и дизельных двигателей, а также узнаем, что такое линия возврата топлива (“обратка”) и зачем она нужна.

  1. Состав и функции системы подачи топлива
  2. Виды питания бензиновых двигателей
  3. Карбюраторные
  4. Инжекторные
  5. Схема, устройство и принцип работы для дизельного двигателя
  6. Common rail
  7. Разделенная и насос-форсунка
  8. Линия возврата топлива (“обратка”)
  9. Полезное видео

Состав и функции системы подачи топлива

Главная функция любой топливной системы – это подача необходимого количества топлива из бака в камеру сгорания в определенный момент времени. Функционально она разделяется на две основных системы:

  • транспортировка топлива, его фильтрация и создание давления в системе – выполняется механическими и гидравлическими устройствами;
  • расчет количества и момента впрыска топлива, а также распределение его по цилиндрам – осуществляется электронными устройствами.

Как работает дизельный двигатель? Топливная система автомобиля

В состав топливной системы входят следующие элементы:

  • Бак – герметичная емкость для хранения топлива.
  • Трубопроводы (прямой и обратный) – трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
  • Фильтры (грубой и тонкой очистки) – выполняют очистку от механических загрязнений.
  • Регулятор давления – необходим для обеспечения заданного уровня давления.
  • Насос – как правило, погружной, приводимый в движение электродвигателем.
  • ТНВД – для систем непосредственного впрыска (дизельных двигателей).
  • Топливные форсунки.

Виды питания бензиновых двигателей

В зависимости от типа бензинового двигателя, различают топливные системы:

  • карбюраторные;
  • инжекторные.

Они имеют отличия в конструкции и рабочих параметрах.

Карбюраторные

Работа карбюраторной системы осуществляется по следующему принципу:

  1. Насос всасывает топливо из бака. При этом он обеспечивает невысокое давление, достаточное лишь для подачи топлива.
  2. Двигаясь по трубопроводу, топливо проходит фильтрацию.
  3. В специальной камере (карбюраторе) горючее смешивается с воздухом.
  4. Готовая смесь подается напрямую в цилиндры двигателя, где она сгорает.

Инжекторные

Топливная система инжекторного двигателя отличается тем, что имеет систему впрыска, принудительно нагнетающую топливо в камеру сгорания. Какое давление в топливной системе инжекторного двигателя создает насос зависит от типа впрыска:

  • С индивидуальными форсунками для каждого цилиндра (распределенный впрыск). Создаваемое насосом давление в топливной рампе составляет от 2,5 бар до 4 бар.
  • С одной форсункой (моновпрыск), подающей топливо для всех цилиндров двигателя. Простая схема, которая в современном автомобилестроении практически не используется из-за низкой экономичности.
  • Непосредственный впрыск. Форсунки установлены в головке блока цилиндров, что позволяет выполнять прямой впрыск топлива в цилиндры. В этом случае рабочее давление составит около 155 бар.

Схема работы топливной системы инжекторного бензинового двигателя:

  1. Насос через фильтры подает бензин в топливную рампу.
  2. Регулятор на рампе обеспечивает заданный уровень давления топлива.
  3. Форсунки, установленные на рампе, впрыскивают топливо в цилиндры.
  4. В момент подачи бензина в цилиндры подается и воздух, образуется топливовоздушная смесь.

Схема, устройство и принцип работы для дизельного двигателя

Системы подачи дизельного топлива имеют свои особенности. Различают три типа конструкций:

  • Сommon rail (или аккумуляторная);
  • С насос-форсунками;
  • Разделенные.

Common rail

Наиболее популярная топливная система для дизелей – аккумуляторная (или common rail). Она соответствует более высоким экологическим стандартам. Это обеспечивается благодаря независимости процессов впрыскивания дизеля от режимов работы двигателя.

Конструктивно система питания дизеля common rail имеет два основных контура:

  1. Участок низкого давления – состоит из топливного бака, насоса низкого давления, трубопроводов и фильтра.
  2. Участок высокого давления – состоит из топливного насоса высокого давления (ТНВД), трубопровода, рампы (аккумулятора) и форсунок.

Принцип работы топливной системы дизеля представляет собой следующую последовательность:

  1. Насос низкого давления нагнетает дизель из топливного бака в трубопровод.
  2. Проходя по трубопроводу через фильтры грубой и тонкой очистки дизель подается в насос высокого давления.
  3. ТНВД подает топливо в форсунки, с помощью которых происходит впрыск в цилиндры.
  4. Одновременно с впрыском топлива происходит подача воздуха.

Разделенная и насос-форсунка

Разделенная топливная система состоит из топливного бака, трубопроводов, ТНВД и форсунок. При этом насос и форсунки соединены длинными трубопроводами, рассчитанными на высокое давление. Разделенная схема активно применяется в отечественном автомобилестроении, поскольку отличается низкой стоимостью и простотой конструкции.

В свою очередь, насос-форсунка – устройство, одновременно создающее нужный уровень давления и производящие впрыск топлива. Она располагается в головке блока цилиндров и приводится в действие кулачковым механизмом. Прямая и обратная магистрали при этом реализованы как каналы, находящиеся непосредственно в головке блока.

Рабочее давление при такой схеме составляет до 2 200 бар.

Этот способ имеет важный недостаток – он характеризуется зависимостью давления от режима работы двигателя.

Линия возврата топлива (“обратка”)

Как правило, топливный насос имеет постоянную производительность, то есть закачивает топливо из бака в рампу под постоянным давлением. Двигатель же работает на разных режимах, потребляя разное количество топлива, в зависимости от его нагрузки. Таким образом, возникает необходимость контролировать давление и количество топлива в топливной рампе.

Этим занимается регулятор давления топлива, который сливает излишки топлива обратно в бак через линию возврата топлива, так называемую “обратку”. В настоящий момент существует два вида топливных систем, отличающихся наличием или отсутствием линии возврата топлива (обратной магистрали).

  1. Система подачи топлива с линией возврата. Топливо, которое не было впрыснуто форсункой, является избыточным и оно возвращается обратно в бак через регулятор, который расположен на топливной рампе, и линию возврата. Таким образом в топливном коллекторе поддерживается постоянное давление.
  2. Топливная система без линии возврата. Регулятор давления топлива в таких системах обычно устанавливается в модуле погружного топливного насоса. Избыточное топливо, подаваемое насосом, возвращается обратно в бак через короткую линию возврата. При этом в топливную рампу подается только то количество топлива, которое впрыскивается форсунками. Данная система имеет следующие преимущества – меньшая стоимость и меньший подогрев топлива в баке.

Полезное видео

Ознакомьтесь с дополнительной информацией о системе питания инжекторного двигателя на видео ниже:

Как правило, основные элементы топливной системы одинаковы для большинства моделей автомобилей, находящихся в одной категории. С другой стороны, практические характеристики могут изменяться, в зависимости от технических особенностей конкретного двигателя.

Система питания топливом дизельного двигателя

Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха.

Дизельное топливо

Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).

Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.

Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).

Требования к агрегатам и узлам системы питания

Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования:

  • герметичность
  • малые масса и габариты
  • надежность
  • коррозионная стойкость
  • малые гидравлические сопротивления
  • простота
  • низкая стоимость обслуживания

Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение.

Общее устройство системы питания

Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы. Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления.

При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия.

Как работает дизельный двигатель?

Рис. Схема системы питания топливом мощного дизеля:
1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос; 9 — фильтр грубой очистки; 10 — предпусковой топливоподкачивающий насос; 11 — топливораспределительный кран; топливные трубопроводы обозначены сплошной линией; трубопроводы для удаления воздуха из системы обозначены пунктиром

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса. После пуска этот насос не функционирует.

Если в ТНВД и трубопроводы высокого давления, соединяющие его с форсунками, попадает воздух, то подача топлива в цилиндры нарушается. Следовательно, нарушается и нормальный режим работы двигателя. С целью предотвращения попадания воздуха в ТНВД на пути топлива к нему помещают воздухоотстойник, расположенный в самой высокой точке системы. Обычно воздухоотстойник размещают в крышке фильтра тонкой очистки. Перед пуском двигателя в случае необходимости скопившийся в воздухоотстойнике воздух отводят в воздушные полости топливных баков 1 через кран (клапан) 2 для выпуска воздуха. Для этого при неработающем двигателе открывают кран (клапан) и с помощью предпускового насоса прокачивают систему. В этом случае топливо вытесняет воздух из воздухоотстойника в воздушную полость топливного бака через топливораспределительный кран (как показано на рисунке) или напрямую.

Топливный бак

Топливо, просочившееся в форсунках между иглой и распылителем, отводится по сливным трубопроводам в специальный бачок 7 или в какой-либо основной топливный бак.

Топливные баки служат для хранения топлива. Они могут иметь различную конфигурацию и вместимость в зависимости от конструкции конкретного ТС. Общая вместимость топливных баков определяется запасом хода машины (обычно не менее 500 км). Чаще всего баки изготавливает из листовой стали или высокопрочного пластика, стойкого к воздействию химически активного топлива. Для предотвращения коррозии внутренние поверхности стальных баков покрывают бакелитовым лаком, оцинковывают или лудят. С целью увеличения жесткости баков на их стенках иногда выштамповывают желоба, а внутри устанавливают несплошные перегородки, которые к тому же уменьшают площадь свободной поверхности топлива и ослабляют его колебанияbqвремя движения ТС.

Наливные горловины топливных баков обычно снабжают сетчатыми фильтрами. В нижней части баков размещают отстойники. Если бак имеет значительную вместимость, то слив топлива осуществляется через отверстие с пробкой и шариковым клапаном, расположенное выше отстойника. В этом случае используется специальный ключ-трубка со шлангом. Воздушное пространство баков соединяется с атмосферой через дренажные трубки или другие специальные устройства, которые должны исключать возможность попадания огня во внутреннюю полость бака и вытекания топлива при резких толчках ТС, а также (по возможности) обеспечивать очистку воздуха, поступающего в баки. Для замера количества топлива в баках раньше применялись измерительные стержни. В настоящее время для этой цели чаще всего используются электрические датчики поплавкового типа, посылающие электрический сигнал, пропорциональный уровню топлива, к соответствующему указателю на приборной панели ТС.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Как работает дизельный двигатель?

Рис. Схема плунжерного топливоподкачиваюгцего насоса:
1 — нагнетательный клапан; 2 — корпус насоса ручной подкачки топлива; 3 — поршень насоса ручной подкачки топлива; 4 — впускной клапан; 5 — корпус топливоподкачивающего насоса; 6, 9 — пружины; 7 — плунжер; 8 — шток; 10 — толкатель; 11 — ролик; 12 — эксцентрик кулачкового вала

Как работает дизельный двигатель?

Рис. Схема коловратного топливоподкачивающего насоса:
1 — пружина редукционного клапана; 2 — редукционный клапан; 3 — перепускной клапан; 4 — пружина перепускного клапана; 5 — плавающий палец; 6 — пластина; 7 — ротор; 8 — направляющий стакан; А—В — камеры насоса

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Предпусковой топливоподкачивающий насос

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.

Фильтры грубой и тонкой очистки топлива

Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.

В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:

  • сетчатые
  • ленточно-щелевые
  • пластинчато-щелевые

У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.

В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.

Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.

Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.

В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.

В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.

ТНВД. Устройство и принцип работы

Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент. В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.

Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами. В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.

Как работает дизельный двигатель?

Рис. Топливный насос высокого давления:
1, 4 — продольные каналы; 2 — штуцер; 3 — нагнетательный клапан; 5 — корпус насоса; 6 — роликовый толкатель; 7 — кулачковый вал; 8 — плунжер; 9 — зубчатая рейка; 10 — поворотная втулка; 11 — возвратная пружина

Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.

Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.

Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.

Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки. При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.

Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.

Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.

Механизм всережимного регулятора

С ТНВД соединен механизм всережимного регулятора. Он автоматически поддерживает заданную водителем частоту вращения коленчатого вала, устанавливает минимальную частоту на холостом ходу, а также ограничивает максимальную частоту. Механизм регулятора представляет собой систему тяг, пружин и упоров, связанных с зубчатой рейкой ТНВД, перемещение которых зависит от частоты вращения кулачкового вала.

Форсунка

Форсунка служит для подачи топлива в цилиндр двигателя под высоким давлением в мелкораспыленном виде.

Типичная форсунка включает в себя корпус 5 с распылителем 3, направляющим штифтом 4 и накидной гайкой 2, иглу 1 распылителя со штоком б, пружину 7 с опорной шайбой, регулировочным винтом 9 и втулкой 8, колпачковую гайку 10 и топливоприемный штуцер 12 с сетчатым фильтром 11. Распылитель и игла должны быть очень точно подогнаны друг к другу. В верхней части распылителя имеются один кольцевой и несколько (чаще всего три) вертикальных топливных канала, а в нижней части — центральные входной и выходной каналы с распыляющими отверстиями. Диаметр этих отверстий составляет 0,2…0,4 мм. Игла своим нижним конусным концом закрывает выходной канал. Распылитель плотно прикрепляется к корпусу-форсунки с помощью накидной гайки. Топливный канал корпуса соединяется с кольцевым каналом распылителя через его вертикальные каналы. Правильное положение распылителя относительно корпуса обеспечивает направляющий штифт.

Как работает дизельный двигатель?

Рис. Форсунка:
1 — игла распылителя; 2 — накидная гайка; 3 — распылитель; 4 — направляющий штифт; 5 — корпус форсунки; 6 — шток; 7 — пружина; 8 — втулка; 9 — регулировочный винт; 10 — колпачковая гайка; 11 — сетчатый фильтр; 12 — топливоприемный штуцер

Топливо, подаваемое к форсунке по топливоприемному штуцеру, проходит через сетчатый фильтр и по топливным каналам корпуса в верхней части распылителя поступает в его кольцевую полость. По достижении необходимого давления в этой полости, действующего кроме прочего на конический поясок иглы, она поднимается вверх, преодолевая сопротивление пружины. В это время открывается выходной канал, и топливо через него и распыливающие отверстия поступает в камеру сгорания цилиндра двигателя.

После прекращения подачи топлива насосной секцией ТНВД и падения давления игла снова садится в свое седло, прекращая впрыскивание топлива. Просочившееся через неплотности топливо поступает в верхнюю часть форсунки и через отверстия в винте 9 и гайке 10 по специальному трубопроводу сливается в бачок 7 для сбора топлива.

Аккумуляторная система питания топливом

Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.

Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.

Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.

Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.

Источник Источник http://diesel-pro.ru/informaciya/kak-rabotaet-dizelnyy-dvigatel/
Источник Источник http://techautoport.ru/dvigatel/toplivnaya-sistema/toplivnye-sistemy-benzinovyh-i-dizelnyh-dvigateley.html
Источник Источник http://ustroistvo-avtomobilya.ru/dizel-naya-toplivnaya-apparatura/sistema-pitaniya-toplivom-dizelya/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Датчик расхода топлива и GPS трекер: как современные технологии помогают следить за транспортом

Датчик расхода топлива и GPS трекер: как современные технологии помогают следить за транспортом

Современные технологии стремительно меняют транспортную отрасль. Одними из ключевых инструментов для оптимизации управления автопарком являются датчики расхода топлива и GPS трекеры. Эти устройства позволяют существенно повысить прозрачность, экономичность и эффективность эксплуатации транспорта, что является важным фактором в условиях растущих цен на топливо и увеличивающихся требований к качеству логистики. Как работает датчик расхода топлива? Датчик расхода […]

Как выбрать масляный фильтр для экскаватора

Как выбрать масляный фильтр для экскаватора

Экскаваторы являются неотъемлемой частью строительной и горнодобывающей техники. Для обеспечения их надежной и долговечной работы важно своевременно заменять топливный, фильтр масляный экскаватора. Правильный выбор фильтра помогает предотвратить повреждения двигателя, уменьшить износ компонентов и повысить общую эффективность работы машины. В этой статье рассмотрим основные аспекты выбора топливного фильтра для экскаватора. Зачем нужен топливный фильтр? Топливный фильтр […]