Системы впрыска дизельных двигателей
Системы впрыска дизельных двигателей
Концептуально двигатели внутреннего сгорания – бензиновые и дизельные практически идентичны, но существует между ними ряд отличительных особенностей. Одной из основных является разное протекание процессов горения в цилиндрах. У дизеля топливо загорается от воздействия высоких температур и давления. Но для этого необходимо, чтобы дизтопливо подавалось непосредственно в камеры сгорания не только в строго определенный момент, но еще и под высоким давлением. И это обеспечивают системы впрыска дизельных двигателей.
Постоянное ужесточение экологических норм, попытки получить больший выход мощности при меньших затратах топлива обеспечивают появление все новых конструктивных решений в топливной системе дизеля.
Принцип работы у всех существующих видов впрыска дизеля идентичен. Основными элементами питания являются топливный насос высокого давления (ТНВД) и форсунка. В задачу первой составляющей входит нагнетание дизтоплива, благодаря чему давление в системе значительно повышается. Форсунка же обеспечивает подачу топлива (в сжатом состоянии) в камеры сгорания, при этом распыляя его для обеспечения лучшего смесеобразования.
Стоит отметить, что давление топлива напрямую влияет на качество сгорания смеси. Чем оно выше, тем дизтопливо лучше сгорает, обеспечивая больший выход мощности и меньшее содержание загрязняющих веществ в отработанных газах. И для получения более высоких показателей давления использовали самые разные конструктивные решения, что и привело к появлению разных видов систем питания дизеля. Причем все изменения касались исключительно указанных двух элементов – ТНВД и форсунок. Остальные же составляющие – бак, топливопроводы, фильтрующие элементы, по сути, идентичны во всех имеющихся видах.
Типы дизельных систем питания
Дизельные силовые установки могут быть оснащены системой впрыска:
- с рядным насосом высокого давления;
- с насосами распределительного типа;
- с насос-форсунками;
- аккумуляторного типа (Common Rail).
Далее рассмотрим лишь некоторые особенности, которыми обладают указанные системы впрыска дизельных двигателей, а также их положительные и отрицательные качества.
С рядным насосом
Система питания с рядным ТНВД можно считать «родителем» всех остальных, поскольку она является первой, используемой на дизельных моторах. Но сейчас она уже считается устаревшей и практически не используется.
Рядный ТНВД на 8 форсунок
Изначально эта система была полностью механической, но после в ее конструкции начали использоваться электромеханические элементы (касается регуляторов изменения цикловой подачи дизтоплива).
Основная особенность этой системы заключена в насосе. В нем плунжерные пары (прецизионные элементы, создающие давление) обслуживали каждый свою форсунку (количество их соответствовало количеству форсунок). Причем эти пары размещались в ряд, отсюда и название.
К достоинствам системы с рядным насосом можно отнести:
- Надежность конструкции. Насос имел систему смазки, что обеспечивало узлу большой ресурс;
- Невысокая чувствительность к чистоте топлива;
- Сравнительная простота и высокая ремонтопригодность;
- Большой ресурс насоса;
- Возможность работы мотора при отказе одной секции или форсунки.
Но недостатки у такой системы более существенны, что и привело к постепенному отказу от нее и отданию предпочтения более современным. Негативными сторонами такого впрыска считаются:
- Невысокие быстродействие и точность дозировки топлива. Механическая конструкция просто не способна это обеспечить;
- Сравнительно невысокое создаваемое давление;
- В задачу ТНВД входит не только создание давления топлива, но еще и регулировка цикловой подачи и момент впрыска;
- Создаваемое давление напрямую зависит от оборотов коленчатого вала;
- Большие габариты и масса насоса.
Эти недостатки, и в первую очередь – невысокое создаваемое давление, привело к отказу от этой системы, поскольку она просто перестала вписываться в стандарты по экологичности.
С насосом распределенного типа
ТНВД распределенного впрыска стала следующим этапом в развитии систем питания дизельных агрегатов.
Изначально такая система была тоже механической и отличалась от описанной выше лишь конструкцией насоса. Но со временем в ее устройство добавили систему электронного управления, которая улучшила процесс регулировки впрыска, что позитивно сказалось на показателях экономичности мотора. Определенный период такая система вписывалась в стандарты экологичности.
Особенность этого типа впрыска сводилась к тому, что конструкторы отказались от использования многосекционной конструкции насоса. В ТНВД начала использоваться всего одна плунжерная пара, обслуживающая все имеющиеся форсунки, количество которых варьируется от 2 до 6. Для обеспечения подачи топлива на все форсунки, плунжер совершает не только поступательные движения, но еще и вращательные, которые и обеспечивают распределение дизтоплива.
ТНВД с насосом распределенного типа
Позже эта система добавилась новым типом насоса – роторным, у которого устанавливаются несколько плунжеров, но распределенная подача осталась. Это позволило увеличить создаваемое насосом давление.
К положительным качествам таких систем относились:
- Малые габаритные размеры и масса насоса;
- Лучшие показатели по топливной экономичности;
- Использование электронного управления повысило показатели системы.
К недостаткам же системы с насосом распределенного типа относятся:
- Небольшой ресурс плунжерной пары;
- Смазка составных элементов осуществляется топливом;
- Многофункциональность насоса (помимо создания давления он еще управляется подачей и моментом впрыска);
- При отказе насоса система прекращала работать;
- Чувствительность к завоздушиванию;
- Зависимость давления от оборотов двигателя.
Широкое распространение такой тип впрыска получил на легковых авто и небольшом коммерческом транспорте.
Насос-форсунки
Насос-форсунки можно считать отдельной веткой в дизельных системах питания, поскольку в конструкции ТНВД как таковой не используется.
Особенность этой системы заключена в том, что форсунка и плунжерная пара объединены в единую конструкцию. Привод секции этого топливного узла осуществляется от распределительного вала.
Примечательно, что такая система может быть как полностью механической (управление впрыском осуществляется рейкой и регуляторами), так и электронной (используются электромагнитные клапаны).
Некой разновидностью этого типа впрыска является использование индивидуальных насосов. То есть для каждой форсунки предусматривается своя секция, приводимая в действие от распределительного вала. Секция может располагаться непосредственно в ГБЦ или быть вынесенной в отдельный корпус. В такой конструкции используются обычные гидравлические форсунки (то есть, система механическая). В отличие от впрыска с ТНВД, магистрали высокого давления – очень короткие, что позволило значительно увеличить давление. Но такая конструкция особого распространения не получила.
К положительным качествам насос-форсунок питания можно отнести:
- Значительные показатели создаваемого давления (самые высокие среди всех используемых типов впрыска);
- Небольшая металлоемкость конструкции;
- Точность дозировки и реализации многократного впрыска (в форсунках с электромагнитными клапанами);
- Возможность работы двигателя при отказе одной из форсунок;
- Замена поврежденного элемента не сложная.
Но имеются в таком типе впрыска и недостатки, среди которых:
- Неремонтопригодность насос-форсунок (при поломке требуется их замена);
- Высокая чувствительность к качеству топлива;
- Создаваемое давление зависит от оборотов двигателя.
Насос-форсунки получили широкое распространение на коммерческом и грузовом транспорте, а также эту технологию использовали некоторые производители легковых авто. Сейчас она не очень часто используется из-за высокой стоимости обслуживания.
Common Rail
Аккумуляторная система (Common Rail) пока является самой совершенной в плане экономичности. Также она полностью вписывается в последние стандарты экологичности. К дополнительным «плюсам» можно отнести ее применяемость на любых дизельных двигателях, начиная от легковых авто и заканчивая морскими судами.
Система впрыска Common Rail
Особенность ее заключена в том, что многофункциональность ТНВД не требуется, и в его задачу входит только нагнетание давления, причем не для каждой форсунки отдельно, а общую магистраль (топливную рампу), а уже от нее дизтопливо подается на форсунки.
При этом топливные трубопроводы, между насосом, рампой и форсунками имеют сравнительно небольшую длину, что позволило повысить создаваемое давление.
Управление работой в этой системе осуществляется электронным блоком, что значительно увеличило точность дозировки и скорость работы системы.
Положительные качества Common Rail:
- Высокая точность дозировки и использование многорежимного впрыска;
- Надежность ТНВД;
- Нет зависимости значения давления от оборотов мотора.
Негативные же качества у этой системы такие:
- Чувствительность к качеству топлива;
- Сложная конструкция форсунок;
- Отказ системы при малейших потерях давления из-за разгерметизации;
- Сложность конструкции из-за наличия ряда дополнительных элементов.
Несмотря на эти недостатки автопроизводители все больше отдают предпочтение Common Rail перед другими видами систем впрыска.
Как работает дизельный двигатель?
Автомобили с дизельными двигателями составляют почти половину от всего количества транспортных средств, ежегодно продаваемых как на официальных дилерских площадках, так и на вторичном рынке.
Силовые установки этого типа характеризуются экономичностью, значительной мощностью и динамикой. Такие агрегаты демонстрируют высокий крутящий момент и принципиально недоступный для бензиновых двигателей КПД (35%-35% у дизельных систем против 25%-35% у их аналогов). Эти преимущества, а также понизившийся уровень шума при эксплуатации и полное соответствие перманентно усложняющимся стандартам безопасности окружающей среды и обеспечили популярность дизелей как в легковом, так и в коммерческих классах транспортных средств.
Как происходит запуск дизельного двигателя?
Принцип работы дизельного двигателя следующий: в цилиндры поступает чистый воздух, который вследствие высокого сжатия нагревается до 700°С и более. После этого, при приближении поршня к верхней точке его траектории в камеру сгорания под давлением подается горючее, которое воспламеняется при контакте с горячим воздухом. Момент воспламенения сопровождается резким повышением давления в цилиндре. Такой принцип работы позволяет мотору работать на максимально обедненных смесях, что обеспечивает экономичность его эксплуатации.
Для холодного старта дизеля используется система предпускового нагрева, основным элементом которой являются свечи накаливания –нагревательные элементы, размещенные в камерах сгорания. Они позволяют за несколько секунд поднять температуру воздуха до требуемого значения. При включении системы в салоне загорается лампочка. Ее обесточивание свидетельствует о готовности двигателя к запуску. Подача электроэнергии к свечам прерывается автоматически, спустя 15сек – 25 сек после старта. Это условие позволяет обеспечить стабильную работу непрогретого агрегата. Современные системы данного типа делают возможным легкий запуск дизеля при температурах до -30°С при условии исправности мотора и использования масла и топлива соответствующей сезонности и качества.
Конструктивные особенности
Схема дизельного двигателя в целом повторяет механизм бензинового силового агрегата с той разницей, что аналогичные детали значительно усиливаются с учетом более высоких нагрузок. Поскольку воспламенение происходит в результате сжатия, из схемы исключаются компоненты системы зажигания, а свечи заменяются на элементы накаливания, не дающие искры и предназначенные для предварительного прогревания воздуха в камерах сгорания.
Характерной особенностью конструкции дизельного двигателя, связанной с самим принципом его работы, является геометрия днища поршней. Их форма определяется спецификой камеры сгорания. В верхней точке хода поршня, его днище оказывается выше самой крайней точки блока цилиндров. В некоторых случаях, в донышке поршня и располагается сама камера сгорания. От ее типа и реализованного способа подачи смеси и зависят технические и экологические характеристики конкретной модели дизельного двигателя.
Типы камер сгорания
В зависимости от их геометрии различают следующие виды камер сгорания.
Разделенные. В этом случае первичный впрыск горючего производится в отдельную полость, расположенную в головке блока. Такая технология позволяет снизить нагрузку на поршневую группу, а также значительно уменьшить шум от работы двигателя.
При этом процесс образования смеси может быть:
- Форкамерным (предкамерным). Топливо под давлением поступает в предварительную камеру, соединенную с цилиндром несколькими каналами, где ударяется о ее стенки и таким образом смешивается с воздухом. После воспламенения смесь передается в основную камеру, где и дожигается полностью. Необходимый для максимально быстрого истечения газов через каналы перепад давления между цилиндром и форкамерой возникает в момент хода поршня на сжатие и на расширение.
- Вихрекамерным. В этом случае первичное возгорание смеси также производится в отдельной камере, имеющей сферическую геометрию. В момент хода поршня на сжатие порция воздуха поступает в нее по соединительному каналу и интенсивно закручивается, образуя вихревой поток, за счет чего хорошо смешивается с горючим, поданным в определенный момент.
Характерными недостатками агрегатов с разнесенными камерами сгорания является усложненный запуск и повышенный расход топлива в связи с потерями при переходе порции воздуха в дополнительную камеру и обратного хода воспламененной смеси – в цилиндр.
Неразделенные. В этом случае горючее под давлением подается в цилиндр, а камерой служит полость, выбранная в донце поршня. В силу того, что такие агрегаты характеризуются повышенным уровнем шума и вибраций в процессе работы, особенно – при разгоне, до недавнего времени неразделенные агрегаты использовались на низкооборотистых моторах большого объема, предназначенных для коммерческого транспорта. Появление электронных систем впрыска позволило оптимизировать сгорание смеси в таких двигателях и значительно снизить уровень шума от их работы, что в свою очередь сделало неразделенные конструкции наиболее перспективным технологическим решением при проектировании новых типов силовых агрегатов.
Устройство топливной системы дизельного двигателя
Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.
Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:
- Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
- Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.
Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.
Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.
Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.
Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.
- Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос. Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
- Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.
Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.
Похожие статьи
Дизельные силовые агрегаты представляют собой принципиально иную конструкцию, нежели их бензиновые аналоги. Ключевое различие заключается в технологии приготовления и воспламенения горючего. .
Автомобильный справочник
для настоящих любителей техники
Система подачи топлива дизельного двигателя
Система подачи топлива дизельного двигателя заключается в фильтрации, накоплении и подаче топлива в систему впрыска под давлением, соответствующим любым рабочим условиям. В некоторых случаях осуществляется охлаждение топлива, возвращаемого в топливный бак.
Система подачи топлива (ступень низкого давления)
Система подачи топлива включает следующие основные компоненты (см. рис. «Топливная система автомобиля с системой впрыска топлива с общей топливной магистралью» ): топливный бак, фильтр грубой очистки (не для системы насос-форсунок легковых автомобилей), предварительный насос (опция, на легковых автомобилях может устанавливаться в топливном баке), топливный фильтр, насос подачи топлива (низкого давления), клапан регулирования давления (перепускной клапан), охладитель топлива (опция) и топливопроводы низкого давления.
Отдельные компоненты могут быть объединены в функциональные узлы (например, насос подачи топлива с ограничителем давления). В осевых и радиально-поршневых распределительных насосах и, частично, в системе общей топливной магистрали, насос подачи топлива встроен в насос высокого давления.
Системы подачи топлива значительно различаются в зависимости от используемой системы впрыска топлива, см. рис. «Топливная система автомобиля с системой впрыска топлива с насос-форсунками для легковых автомобилей» ) и «Топливная система автомобиля с системой впрыска топлива с радиально — поршневым топливным насосом высокого давления» (системы с общей топливной магистралью, с насос-форсунками и с радиально-поршневым ТНВД, соответственно).
Назначением насоса подачи топлива в ступени низкого давления (предварительного насоса) является снабжение компонентов высокого давления достаточным количеством топлива при любых условиях работы, с низким уровнем шума, под требуемым давлением и на протяжении всего срока службы автомобиля. В зависимости от области применения, используются насосы различных типов.
Электрические топливные насосы
Электрические топливные насосы (см. рис. «Одноступенчатый электрический топливный насос» ) различных типов применяются для двигателей с искровым зажиганием. Для дизельных двигателей обычно применяются роторные роликовые насосы.
- В качестве дополнительного насоса для распределительного топливного насоса (только в случае длинных топливопроводов или большой разницы по высоте между топливным баком и топливным насосом);
- В системах впрыска топлива с насос- форсунками (для легковых автомобилей);
- В системах впрыска топлива с общей топливной магистралью (для легковых автомобилей).
Шестеренчатый насос
Шестеренчатый насос устанавливается прямо на двигателе или, в случае общей топливной магистрали, встраивается в топливный насос высокого давления. Он приводится во вращение механически, посредством муфты, зубчатой передачи или зубчатого ремня.
Основными компонентами насоса являются два входящих в зацепление друг с другом зубчатых колеса, вращающихся в противоположных направлениях (см. рис. «Шестеренчатый топливный насос» ), которые подают топливо во впадины между зубьями со стороны всасывания в сторону нагнетания. Линия контакта зубчатых колес обеспечивает уплотнение между сторонами всасывания и нагнетания, что предотвращает обратный поток топлива.
Производительность насоса приблизительно пропорциональна частоте вращения коленчатого вала. Поэтому подача топлива регулируется при помощи ограничителей на стороне всасывания или перепускного клапана на стороне нагнетания.
- В системах с одноцилиндровыми насосами высокого давления на коммерческих автомобилях (системы с насос-форсунками или отдельным топливным насосом высокого давления);
- Частично, в системах с общей топливной магистралью (для коммерческих, легковых и внедорожных автомобилей).
Лопастной насос подачи топлива
Лопастной насос подачи топлива (см. рис. «Лопастной насос» ) устанавливается на приводном вале в распределительном топливном насосе высокого давления. На приводном вале на сегментной шпонке установлено рабочее колесо. Эксцентриковое кольцо, установленное в корпусе, окружает рабочее колесо.
Под действием центробежных сил, создаваемых во время вращения, четыре лопасти рабочего колеса прижимаются к эксцентриковому кольцу. Топливо, находящееся между обратной стороной лопастей и рабочим колесом, способствует выдвижению лопастей наружу.
Топливо проходит через впускной канал и серпообразную полость в пространство, образуемое рабочим колесом, лопастью и эксцентриковым кольцом. Силы вращательного движения вытесняют топливо, находящееся между лопастями, в верхнюю серпообразную полость и далее в выпускной канал.
Пример использования: в качестве насоса предварительной подачи топлива, встраиваемого в распределительный насос высокого давления.
Роторный насос с запорными лопастями
В роторном насосе с запорными лопастями (см. рис. «Роторный насос с запорными лопастями» ), две лопасти прижимаются пружинами к ротору. По мере поворота ротора объем на стороне всасывания увеличивается, и топливо засасывается в две камеры. На стороне нагнетания объем уменьшается, и топливо вытесняется из камер. Роторный насос с запорными лопастями осуществляет подачу топлива с очень низкой скоростью.
Пример использования: на легковых автомобилях, совместно с системами впрыска топлива с использованием насос-форсунок.
Сдвоенный топливный насос
Сдвоенный топливный насос (см. рис. «Сдвоенный топливный насос» ) представляет собой узел, состоящий из насоса подачи топлива и вакуумного насоса для усилителя тормозов. Он встраивается в головку блока цилиндров и приводится во вращение от распределительного вала двигателя.
Сам топливный насос представляет собой роторный насос с запорными лопастями или шестеренчатый насос, и даже при низких скоростях вращения (вовремя проворота двигателя стартером) подает топливо в количестве, достаточном для надежного пуска двигателя. Подача топлива пропорциональна скорости вращения.
Насос содержит ряд клапанов и дросселирующих каналов. Максимальное количество подаваемого топлива ограничивается дросселирующим каналом на стороне всасывания. Максимальное давление в ступени высокого давления ограничивается клапаном сброса давления. Пузырьки паров топлива уничтожаются в дросселирующем канале линии возврата топлива. В случае попадания в топливную систему воздуха (например, при полном опорожнении топливного бака) клапан регулирования низкого давления остается закрытым. Воздух вытесняется из топливной системы через перепускной канал давлением топлива.
Пример использования: на легковых автомобилях, совместно с системами впрыска топлива с использованием насос-форсунок.
Клапан регулирования низкого давления
Клапан регулирования низкого давления (см. рис. «Клапан регулирования давления» ), также называемый перепускным ограничителем, устанавливается в линии возврата топлива. Он обеспечивает требуемое рабочее давление в ступени низкого давления в системе впрыска топлива с насос-форсунками при любых рабочих условиях и равномерное наполнение насос-форсунок топливом.
Плунжер аккумулятора клапана открывается при давлении 300-350 кПа (3-3,5 бар). Небольшие колебания давления в объеме аккумулятора компенсируются пружиной. При давлении 4-4,5 бар открывается уплотнение, что вызывает заметное увеличение расхода. Для установки значения давления открытия служат два регулировочных винта.
Охладитель дизельного топлива
Высокое давление в форсунках в системах впрыска топлива с насос-форсунками для легковых автомобилей и в некоторых системах с общей топливной магистралью вызывает столь интенсивный нагрев топлива, что перед его возвратом в топливный бак требуется охлаждение. Топливо, возвращаемое из форсунок в топливный бак, проходит через охладитель (теплообменник) и отдает тепло охлаждающей жидкости, циркулирующей в контуре охлаждения топлива.
Этот контур отделен от системы охлаждения двигателя, поскольку при нормальной рабочей температуре двигателя температура жидкости в системе охлаждения двигателя слишком высока для охлаждения топлива. Контур охлаждения топлива соединяется с системой охлаждения двигателя у расширительного бачка. Бачок обеспечивает заполнение контура охлаждения топлива охлаждающей жидкостью и компенсирует любые изменения, вызванные колебаниями температуры (см. рис. «Контур охлаждения топлива» ).
Система фильтрации дизельного топлива
Так же как для двигателей с искровым зажиганием, для дизельных двигателей необходимо обеспечить защиту топливной системы от загрязнения. Загрязнения могут проникнуть в топливную систему во время заправки автомобиля или попасть в топливный бак через систему вентиляции топливного бака. Функция топливного фильтра заключается в фильтрации твердых частиц с целью защиты от повреждения системы впрыска топлива.
По сравнению с системами впрыска топлива двигателей с искровым зажиганием системы впрыска топлива дизельных двигателей, в связи с очень высокими давлениями впрыска, требуют повышенной защиты от износа и более высокой степени фильтрации топлива. Кроме того, степень загрязнения дизельного топлива, как правило, значительно выше, чем у бензина.
Конструкция системы фильтрации дизельного двигателя
Топливные фильтры дизелей выполняются быстросменными (см. рис. «Фильтр дизельного топлива» ). В качестве сменных элементов широко применяются быстросменные фильтры с болтовым креплением, проходные фильтры и неметаллические фильтрующие элементы, устанавливаемые в корпусах из алюминия, пластмассы или листовой стали (в соответствии с повышенными требованиями к предотвращению тяжелых последствий при столкновениях). Предпочтение отдается спиральным, V-образным фильтрующим элементам. Фильтры дизельного топлива устанавливаются в контуре низкого давления: в системах всасывания перед насосом подачи топлива, а в системах нагнетания — после электрического топливного насоса. В настоящее время имеет место тенденция к установке фильтра в системах нагнетания.
Конструктивные требования
В течение нескольких последних лет требования к тонкости фильтрации стали более строгими в связи с появлением систем с общей топливной магистралью с более высокими давлениями впрыска и новейших систем впрыска топлива с насос-форсунками для легковых и коммерческих автомобилей. В зависимости от условий эксплуатации (степени загрязнения топлива, продолжительности периодов простоя двигателя и т.д.) для новых систем требуется степень фильтрации 85 и 98,6 % (частиц размером 3-5 мкм, см. стандарт ISO/TR 13353: 1994). Топливные фильтры, устанавливаемые на автомобили последних поколений, в связи с увеличенными интервалами замены, должны быть способны накапливать большие объемы частиц и эффективно задерживать частицы сверхмалого размера. Этого можно достигнуть, только используя специальные фильтрующие среды, например, состоящие из большого количества слоев синтетического микроволокна. Например, это могут быть многослойные синтетические микроволокна, гарантирующие максимальную степень удерживания частиц путем отделения их от топлива внутри отдельных слоев фильтрующего материала.
В настоящее время типичные интервалы замены фильтрующих элементов составляют от 60 000 до 90 000 км пробега. В регионах с плохим качеством дизельного топлива, таких как Восточная Европа, Китай, Индия и США, эти интервалы значительно короче. При использовании биодизельного топлива рекомендуется сократить интервалы замены в два раза.
Отделение воды
Другой важной функцией топливного фильтра для дизельного двигателя является удаление из топлива разного рода эмульсий и воды с целью предотвращения коррозии. Эффективное отделение не менее 93 % воды при номинальном расходе (испытания в соответствии с ISO 4020) особенно важно для распределительных топливных насосов высокого давления и систем с общей топливной магистралью. Отделение воды осуществляется посредством коалесценции на фильтрующем материале (образования капель воды вследствие различных поверхностных натяжений воды и топлива). Вода скапливается в камере в нижней части корпуса фильтра (см. рис. «Фильтр дизельного топлива» ). В некоторых случаях для контроля уровня воды используются датчики проводимости. Вода сливается вручную через сливную пробку или электромагнитный клапан, управляемый кнопкой.
На автомобилях, предназначенных для эксплуатации в особо тяжелых условиях, на стороне всасывания устанавливается дополнительный фильтр грубой очистки с водоотделителем. Тонкость фильтрации фильтра соответствует тонкости фильтрации фильтра тонкой очистки. Такие фильтры грубой очистки в основном устанавливаются на коммерческих автомобилях, предназначенных для эксплуатации в странах, где имеет место низкое качество дизельного топлива.
Дополнительные функции
Топливные фильтры последнего поколения обладают дополнительными функциями, такими как подогрев топлива для предотвращения закупоривания парафином в условиях низких температур. Подогрев топлива может осуществляться электрическим нагревателем или горячим топливом, возвращаемым из двигателя. В первом случае в фильтре устанавливаются нагреватели типа РТС (с положительным температурным коэффициентом). Во втором случае требуется установка клапана с биметаллическим элементом или воскового термоэлемента, открывающегося при низких температурах и позволяющего топливу возвращаться к фильтру.
К дополнительным функциям также относятся индикация необходимости замены посредством измерения перепада давления и удаления из системы воздуха.
Источник Источник http://autoleek.ru/sistemy-dvigatelja/sistema-vpryska/sistemy-vpryska-dizelnyh-dvigatelej.html
Источник Источник http://diesel-pro.ru/informaciya/kak-rabotaet-dizelnyy-dvigatel/
Источник Источник Источник Источник http://press.ocenin.ru/sistema-podachi-topliva-dizelnogo-dv/