Реферат: Безопасность движения

Реферат: Безопасность движения

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Оренбургский государственный университет»

Кафедра автомобильного транспорта

КОНТРОЛЬНАЯ РАБОТА

По курсу: «Организация безопасности дорожного движения»

Проверил: Ефимов И.Н.

Выполнил: Захаров А.Г.

Оренбург 2004 г.

2. Оборудование кабинета по безопасности движения………6

3. Оборудование, применяемое в кабинетах…………………10

4. Тематические модульные стенды………………………….15

5. Основные положения Конвенции о дорожных знаках

6. Схема рационального движения автотранспорта……….…21

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой. Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла.

Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных – волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё, более совершенствуя их. Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» — «сам» и латинского «мобилис» — «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто — мобильный». Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека.

В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль». Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. Трудно представить себе отрасль народного хозяйства или вид деятельности человека, в которых не использовался бы автомобиль. Наша же страна вступила на путь автомобилизации только после революции 1917 года. До 1917 года в России автомобили большого воодушевления не вызывали. Их распространение имело как сторонников, так и противников: последних пугали, например, несчастные случаи с лошадьми, выхлопные газы и т. п. На первых порах расширение сферы применения автомобиля в нашей стране выразилось лишь в организации в 1904 году петербургского таксомоторного общества, а позднее – в использовании автомобилей почтовыми и военными ведомствами. Хотя дореволюционная Россия не имела высокоразвитой автомобильной промышленности, русские инженеры совершили ряд успешных попыток по разработке и изготовлению собственных конструкций — первый отечественный автомобиль был создан в Санкт-Петербурге в мае 1896 года Е.А. Яковлевым и владельцем каретных мастерских П.А. Фрезе. Ситуация существовавшая, в российском автомобилестроение в начале века когда русские автомобили – несмотря на их ограниченное количество – по своим ходовым качествам и качеству отделки не уступали импортным образцам, к сожалению не сохранилась до наших дней.

Однако автомобилизация несёт людям не только пользу, с популярностью автотранспорта связаны и острые проблемы, переживаемые человечеством в последние годы. Массовость его применения вызвала угрозу истощения ресурсов нефти, загрязнение атмосферы городов, многочисленны случаи дорожно-транспортных происшествий. Для производителей это проблемы сбыта, конкуренции на внутреннем и внешнем рынках, потогонная организация производства и как реакция – активное рабочее движение. Для автолюбителей ограничения проезда автомобилей, их скорости, их технических характеристик. Несмотря на сравнительную сложность и дороговизну, автомобиль стал одним из самых распространённых технических сооружений. Его скоростные, конструкторские качества улучшаются с каждым годом, автомобиль становится всё более комфортабельным. Для безопасности водителей фирмами производителями автомобилей ежегодно тратятся тысячи долларов, что спасает жизни тысячам людей. «Автомобиль не роскошь, а средство передвижения»- эти слова из известного произведения Ильфа и Петрова обрели в наше время реальный смысл.

С одной стороны автомобиль облегчил человеку жизнь, с другой – отравляет её в самом прямом смысле слова. Поскольку основная масса автомобилей сконцентрирована в крупных и крупнейших городах, воздух этих городов не только обедняется кислородом, но и загрязняется вредными компонентами отработавших газов. Установлено что один легковой автомобиль ежегодно поглощает из атмосферы в среднем более 4 тонн кислорода, выбрасывая с отработавшими газами примерно 800кг окиси углерода, около 40кг окислов азота и почти 200кг различных углеводородов. Если эти цифры помножить на 400млн. ед. мирового парка автомобилей, можно представить степень угрозы, таящейся в чрезмерной автомобилизации. Автомобили являются источниками 50% загрязнения атмосферы углеводородами азота и 90% окисью углерода. В странах, где автомобилизация достигла гипертрофированных размеров, автомобили заполнили улицы и дороги, отравляя воздух, поглощая топливные ресурсы. Эффективными профилактическими мероприятиями являются расширение улиц, создание между проезжей частью дорог и жилыми домами фильтров – стен из зелёных насаждений, организация пешеходных зон с полным запретом въезда транспортных средств на жилые улицы.

Для снижения вредного влияния автомобильного транспорта требуется вынос из городской черты грузовых транзитных потоков.

Во многих крупных городах мира очень остро стоит проблема городского транспорта. Транспортные потоки растут вместе с ростом городов из-за стихийного, не подчинённого рациональному планированию размещения жилых и промышленных зон. Распространение пригородного образа жизни ведёт к увеличению числа частных автомобилей (тенденция, которую умело, стимулируют автомобилестроительные компании, прививающие сознанию средних слоёв населения представление об автомобиле как символе социального престижа). Их потоки, затопляющие уличную сеть, делают передвижение по городу в часы «пик» мучительно медленным.

Для ускорения передвижения сооружают грандиозные дорогостоящие системы скоростных автомобильных трасс, получившие наиболее широкое развитие в США и Японии. В стремлении сократить затраты средств на приобретение земельных участков японские инженеры проложили значительную часть таких трасс на мощных железобетонных опорах вдоль русл рек и каналов. Там, где эстакады скоростных автотрасс идут по суше, их опоры местами подняты на высоту 20-25 метров, а пролёты переброшены прямо над кровлями домов.

Создание в городе сети магистралей скоростного движения позволяет существенно увеличить скорости общественного транспорта и легковых автомобилей, повысить её пропускную способность, сократить число дорожно-транспортных происшествий, изолировать жилые районы и общественные центры от концентрированных потоков транспортных средств. Но магистраль – дорогостоящее сооружение. Строительство её может быть эффективно только на направлениях обеспечивающих мощные и устойчивые транспортные потоки с относительно большой в пределах города дальностью поездок, при которой ощутим выигрыш от увеличения скорости движения. Поэтому такие магистрали строят лишь в крупных городах с полицентрической структурой и растянутой территорией.

Автомобильный транспорт является одним из источников шума в городе. Шум в больших городах сокращает продолжительность жизни человека. По данным австрийских исследователей, это сокращение колеблется в пределах 8-12 лет. Чрезмерный шум может стать причиной нервного истощения, психической угнетённости, вегетативного невроза, язвенной болезни, расстройства эндокринной и сердечно-сосудистой систем. Шум мешает людям работать и отдыхать, снижает производительность труда.

Снижение городского шума может быть достигнуто в первую очередь за счёт уменьшения шумности транспортных средств, рациональная застройка магистральных улиц, максимальное озеленение территории микрорайонов и разделительных полос, использование рельефа местности и др. Существенный защитный эффект достигается в том случае, если жилая застройка размещена на расстоянии не менее 25-30 метров от автомагистрали и зоны разрыва озеленены.

Также автомобильный транспорт оказывает негативное воздействие на фауну. Это выражается в загрязнении природной среды и дорог, разрушение мест обитания животных, рассечение дорогами сезонных и суточных участков животных, столкновение последних с транспортными средствами.

Густота дорожной сети постоянно увеличивается, по этому отрицательное воздействие автомобильного транспорта на животный мир будет возрастать. Помня об этом, необходимо принимать действенные меры для уменьшения гибели животных при прокладке новых дорог и проводить охранные мероприятия на уже имеющихся.

Для повышения чистоты воздушного бассейна необходимо применять менее токсичные виды топлива. Например, природный газ, он технически и экономически оправдывает себя. Газ лучше бензина смешивается с воздухом, поэтому полнее сгорает в двигателе, а значит и вредных веществ в газе меньше. Помимо сжатого газа используют сжиженный природный газ.

Решение энергетической проблемы автомобильного транспорта – это создание альтернативных видов топлива. Такие, как спирты, жидкий азот, жидкое синтетическое топливо, водород. Их использование поможет существенно снизить токсичность и отрицательное воздействие автомобиля на окружающую среду.

Оборудование кабинета по безопасности движения в АТП

При этом особое внимание уделяется оборудованию кабинетов и уголков охраны труда, а также кабинетов по безопасности дорожного движения на предприятиях, имеющих в своем составе автотранспорт.

Одной из основных задач администрации и руководства предприятия, специалистов службы охраны труда является профилактика (предупреждение) несчастных случаев на производстве.

Если же, несмотря на все профилактические мероприятия, несчастный случай все же происходит, то тогда необходимо решать другой комплекс задач: оказание первой помощи пострадавшим, квалификация несчастного случая, его расследование, установление причин, разработка мероприятий по их устранению, оформление и учет несчастного случая. Любая неточность в этой работе может привести к весьма неприятным последствиям, как для пострадавших, так и для ответственных за обеспечение безопасности труда на производстве.

В связи с этим руководителям предприятий, лицам, ответственным за соблюдение норм и правил охраны труда, сотрудникам предприятий, необходимо знать, во-первых, что делать, чтобы несчастный случай на предприятии не произошел, и, во-вторых, что делать, если несчастный случай все-таки произошел.

Необходимо отметить, что комплекс мероприятий, относящихся к профилактике (предупреждению) несчастных случаев на производстве существенным образом зависит от характера данного конкретного производства, специфики его деятельности, используемых технологических процессов, оборудования и т.п.

В то же время комплекс мероприятий, которые необходимо проводить, если несчастный случай на производстве все таки произошел, почти не зависит от характера данного конкретного производства.

Кабинет безопасности движения является организационным учебно-методическим центром пропаганды знаний. Содержанием работы кабинета являются организация и проведение:

1. Обучения и инструктажа по безопасности движения на дорогах,

2. Семинаров, курсов и тематических занятий для рабочих и служащих, профсоюзного актива; периодического инструктажа и проверки знаний работников по вопросам безопасности движения;

3. Консультаций, лекций, бесед, просмотров кинофильмов, выставок, пропагандирующих передовой опыт работы;

4. Тематических выставок, пропагандирующих опыт своего и родственных предприятий по снижению травматизма;

5. Информационной работы по пропаганде достижений в области организации безопасности движения, применения новых материалов, процессов и других мероприятий, внедрение которых способствует безопасности движения;

6. Методической помощи цехам, производственным участкам (отделам, лабораториям) в организации и работе стендов по безопасности движения.

Кабинет по безопасности движения рекомендуется создавать на предприятии со списочным количеством работников 100 человек и более.

На предприятии со списочным количеством работников до 300 человек кабинет по безопасности движения может быть совмещен с кабинетом для учебных занятий (техническим кабинетом).

Для оборудования кабинета должно быть выделено специальное помещение, площадь которого рекомендуется определять в зависимости от списочного количества работников:

до 1000 человек — 24 кв. м;

от 1001 до 3000 человек — 48 кв. м;

от 3001 до 5000 человек — 72 кв. м;

от 5001 до 10000 человек — 100 кв. м;

от 10001 до 20000 человек — 150 кв. м;

свыше 20000 человек — 200 кв. м.

Методический кабинет оборудуется по проекту, составленному с учетом специфики производства предприятия.

Непосредственную практическую работу методического кабинета должен организовывать инженер-методист, подчиненный руководителю службы охраны труда.

Кабинет должен быть оснащен в соответствии со стоящими перед ним задачами и иметь три следующих раздела: учебный, справочно-методический и информационно-выставочный.

Учебный раздел — должен быть наибольшим, как по занимаемой площади, так и по количеству используемых в нем материалов; укомплектован учебно-наглядными пособиями, отражающими специфику всех видов движения, а также учебным инвентарем и техническими средствами пропаганды (проекционной, звукозаписывающей и воспроизводящей аппаратурой, контрольно-обучающими машинами, тренажерами, контрольно-измерительными приборами).

Для дистанционного управления техническими средствами обучения необходимо установить на столе преподавателя пульт управления, который состоит из элементов управления техническими средствами обучения и информации (кинопроекционная установка, диапроекторы для демонстрации диапозитивов и диафильмов) и системы рационального затемнения кабинета.

Рекомендуется учебно-наглядные пособия систематизировать по тематике, сведя их в две группы — общую и специальную.

Пособия общей группы могут быть использованы, главным образом, при проведении вводного инструктажа, и тематика их должна быть согласована с программой инструктажа.

Пособия специальной группы должны отражать специфические условия работы производственных участков и требования, предъявляемые к организации и содержанию рабочих мест.

Справочно-методический раздел должен быть укомплектован нормативно-технической документацией по безопасности движения, учебными программами, методическими справочниками, директивными и другими пособиями, необходимыми для проведения обучения, инструктажа и консультаций работающих по вопросам трудового законодательства, техники безопасности и производственной санитарии.

Информационно-выставочный раздел должен быть укомплектован пособиями, оборудованием, экспонатами, действующими моделями, предназначенными для организации постоянных и временных передвижных выставок на территории предприятия.

Создание кабинета по безопасности движения должно осуществляться по определенному плану под руководством службы охраны труда предприятия.

Кабинет должен быть расположен по возможности рядом со службой охраны труда и состоять из 2 помещений: основного (учебного) и подсобного (препараторской).

Подсобное помещение рекомендуется площадью 12—15кв. м.

Естественное освещение кабинета должно быть равномерным и рассеянным и соответствовать требованиям СНиП 11-4-79 «Естественное и искусственное освещение». Отношение площади окон к площади пола должно быть не менее 1:4.

В кабинете необходимо обеспечить освещенность не менее 300 люкс — при люминесцентных лампах и не менее 150 люкс на рабочих местах при лампах накаливания. Рекомендуется предусмотреть раздельное включение и отключение светильников для регулирования освещенности доски, экрана, всего помещения, установить розетки для настольных ламп.

Светильники основного помещения выбирают и располагают так, чтобы световой поток распределялся равномерно, не создавая контрастных теней и не производя слепящего действия. Светильники должны быть плоскими и располагать их надо в 2 ряда под самым потолком, что дает ровный рассеянный свет и обеспечивает хорошее освещение всей площади кабинета, не мешает демонстрации фильмов и диапозитивов, особенно в невысоких помещениях.

В организации учебного процесса главной является фронтальная (стена, к которой аудитория обращена лицом. Необходимо, чтобы она не имела оконных проемов, так как прямой световой поток ухудшает видимость демонстрируемого материала и приводит к быстрому зрительному утомлению. Улучшению освещенности всего помещения способствует окраска стен в светлые тона: нейтрально-серый с легкой примесью голубого или зеленого. Стена с оконными проемами — важный элемент для создания целостного ансамбля кабинета. Простенки на фоне окон выглядят очень темными. Поэтому для уменьшения светового контраста их желательно окрашивать в светлые тона. Необязательно окрашивать все остальные стены кабинета в такой же цвет.

Стена напротив окон предназначается в основном для экспозиции материалов по безопасности движения. Не следует стену разделять на верхнюю (светлую) и нижнюю (темную) панели. Стену окрашивают одним цветом от пола до потолка, что отвечает требованию целостности ансамбля всего помещения.

Стены кабинета не следует перегружать стендами, плакатами, образцами.

Для демонстрации фильмов, диафильмов или диапозитивов оконные проемы оборудуют затемняющими шторами. Подбирая ткань для таких штор, следует учитывать, как она будет сочетаться с цветом стен. Лучше выбирать ткань с рисунком, который успокаивает глаза и создает выгодный фон для мебели и оборудования.

Полы в кабинете целесообразно выполнить из квадратных полихлорвиниловых плиток или линолеума. Цветовую гамму пола желательно выполнить на нейтральных светло-серых сочетаниях, способствующих увеличению освещенности.

Оборудование, применяемое в кабинетах по безопасности движения.

В настоящее время разработан Многофункциональный Автоматизированный Комплекс (МАК), помогающий предприятиям решать обе группы вышеуказанных задач.

МАК предназначен для оборудования кабинетов и уголков охраны труда любых предприятий и кабинетов по безопасности дорожного движения предприятий, имеющих в своем составе автотранспорт.

Он состоит из двух частей: Автоматизированного Обучающего Комплекса (АОК) и Автоматизированного Экзаменационного Комплекса (АЭК), которые могут использоваться как независимо друг от друга, так и совместно и в совокупности дают возможность автоматизировать процесс обучения и контроля знаний по любым вопросам, относящимся к охране труда на производстве, а также вопросам, связанным с безопасной эксплуатацией транспортных средств на предприятиях, имеющих в своем составе автотранспорт.

Остановимся подробнее на элементах, входящих в состав МАК — Автоматизированном Обучающем Комплексе (АОК) и Автоматизированном Экзаменационном Комплексе (АЭК).

АОК СОСТОИТ ИЗ ДВУХ КОМПОНЕНТОВ:

• библиотек учебных фильмов по соответствующим темам, относящимся к вопросам охраны труда и безопасности дорожного движения;

• установок для их автоматической демонстрации.

К настоящему времени для кабинетов и уголков охраны труда любых предприятий разработана библиотека учебных фильмов, относящаяся к вопросам, имеющим общее решение для предприятий практически любого профиля, под общим названием «Что делать, если на вашем предприятии произошел несчастный случай?» Она включает в себя раздел «Первая помощь пострадавшим при несчастных случаях на производстве» (18 учебных фильмов), а также раздел, относящийся к квалификации, классификации, расследованию, оформлению и учету несчастных случаев на производстве (10 учебных фильмов).

Для оборудования кабинетов по безопасности дорожного движения на предприятиях, имеющих в своем составе автотранспорт, полностью разработана библиотека учебных фильмов под общим названием «Что делать, чтобы на вашем предприятии не произошел несчастный случай при эксплуатации автотранспорта?»

Эта библиотека включает в себя следующие разделы: «Правила дорожного движения» — 32 учебных фильма, «Основы безопасности дорожного движения» — 25 учебных фильмов.

Для этих же предприятий, т.е. для предприятий, имеющих в своем составе автотранспорт, предлагается и указанная выше библиотека «Что делать, если на вашем предприятии произошел несчастный случай?».

Как уже было сказано ранее, помимо библиотек учебных фильмов АОК включает в себя установки для их автоматической демонстрации, которые существуют в двух вариантах: некомпьютерном и компьютерном.

Некомпьютерный вариант установки состоит из автоматического диапроектора, портативного СD-проигрывателя с колонками и специального синхронизирующего устройства «Синхро-Пеленг» (см. рис).

Реферат: Безопасность движения

Рис.1. Некомпьютерный вариант установки

При этом каждый учебный фильм включает в себя следующие элементы: лазерный диск (компакт-диск) с записанными на нем уроком, занятием, лекцией по соответствующей тематике, а также специальными сигналами, позволяющими автоматически управлять работой слайд-проектора при демонстрации учебного фильма; слайд-фильм (комплект слайдов с соответствующим иллюстративным материалом).

С момента подключения портативный СD-проигрыватель будет воспроизводить звуковое сопровождение учебного фильма (занятия, урока, лекции) и автоматически управлять переключением диапроектора по специальной программе.

Достаточно вставить компакт-диск в портативный СD-проигрыватель, комплект слайдов (слайд-фильм) в проектор, и озвученный учебный фильм (занятие, урок, лекция) будет воспроизведен автоматически.

Преподаватель может на любом слайде остановить демонстрацию учебного фильма, прокомментировать или дополнить его и затем снова продолжить демонстрацию.

Что немаловажно, работа с автоматической установкой не требует никакой специальной подготовки, а элементы, составляющие установку (портативный СD-проигрыватель и диапроектор), могут использоваться как в составе установки, так и самостоятельно.

Компьютерный вариант установки выполнен на базе мультимедийного персонального компьютера РС/АТ «Pentium-II» (см. рис.2)

Реферат: Безопасность движения

Рис.2. Компьютерный вариант установки

Проведение занятий обеспечивается путем демонстрации аудитории соответствующих учебных фильмов на большом экране с помощью автоматического диапроектора, работающего под управлением компьютера. Лекционный материал при этом подается через звуковые колонки компьютера.

Программный продукт позволяет преподавателю управлять процессом демонстрации учебных фильмов со своего рабочего места, При этом содержание демонстрируемых аудитории учебных фильмов синхронно отображается на находящийся перед преподавателем экран монитора. Преподаватель имеет возможность на любом кадре приостановить демонстрацию учебного фильма, задать необходимые вопросы или дать соответствующие комментарии, а затем продолжить демонстрацию с того места, на котором она была прервана. Управляющая программа предусматривает возможность перехода или возвращения к любому из кадров демонстрируемого учебного фильма, если преподаватель сочтет это необходимым по ходу занятия.

Помимо персонального компьютера, компьютерный вариант укомплектован управляющей программой автоматизированного обучающего комплекса, библиотеками учебных фильмов на компакт-дисках, библиотеками учебных слайд-фильмов (комплектами слайдов) с соответствующим иллюстративным материалом, автоматическим диапроектором и согласующим устройством, с помощью которого компьютер управляет диапроектором.

Вторая часть Многофункционального Автоматизированного Комплекса (МАК) — Автоматизированный Экзаменационный Комплекс (АЭК).

АЭК состоит из персонального компьютера (рабочее место преподавателя) и персональных электронных экзаменаторов-тренажеров (рабочие места учащихся), объединенных в общую сеть (см. рис.3).

Реферат: Безопасность движения

Рис.3 Персональный электронный экзаменатор-тренажер

Персональные электронные экзаменаторы-тренажеры (ПЭЭТ) представляют собой компактное электронное устройство с клавиатурой и индикатором. Внутрь устройства установлена микро­ЭВМ.

С персонального компьютера преподавателя в ПЭЭТ учащегося можно «загрузить» любые экзаменационные билеты или вопросники для контроля знаний на различных этапах учебного процесса.

На индикаторе ПЭЭТ отображается следующая информация; номер билета, номер вопроса, время экзамена и число допущенных ошибок.

Содержательная часть вопросов при работе с ПЭЭТ предоставляется учащимся в любом подходящем для учебного процесса и экзаменов виде (комплекты билетов и тематических задач, комплекты слайдов, вопросники, устные вопросы преподавателя и т.д.). Для ответа на вопрос учащийся нажимает на клавиатуре ПЭЭТ клавишу с номером выбранного варианта ответа. После окончания ответа учащегося на билет, ПЭЭТ выводит на индикатор оценку и позволяет просмотреть ошибки, которые допустил учащийся. Вся информация о работе учащегося поступает в компьютер преподавателя и отображается на экране монитора.

Работа с ПЭЭТ очень проста и не требует никакой специальной подготовки.

Преподаватель управляет работой ПЭЭТ учащихся со своего компьютера с помощью специальной управляющей программы «Менеджер класса». Управляющая программа комплекса отображает на экране список рабочих мест учащихся и позволяет преподавателю задавать индивидуальный режим работы для каждого рабочего места учащегося.

Номер билета может быть выбран препода­вателем или задан для каждого учащегося случайным образом.

Результат ответа учащегося на билет запоминается в отчете, который преподаватель может просмотреть в любое время. В отчет запоминается следующая информация: имя учащегося, комплект билетов и номер билета, на который отвечал учащийся, оценка, число допущенных ошибок и список ошибочных ответов. В списке ошибочных ответов запоминаются номера вопросов, номера ответов учащегося и номера правильных ответов. Преподаватель может сохранить отчет в файле или распечатать его на принтере.

Управляющая программа класса позволяет преподавателю создавать и использовать в дальнейшей работе любые комплекты экзаменационных билетов. Для этого необходимо ввести в компьютер номера правильных ответов на вопросы билетов и условия проведения экзамена: максимальное время, отведенное на ответ по билету, число неправильных ответов, после которых экзамен прерывается, правила формирования результата. Результат ответа на билет может быть в виде оценки по пятибалльной системе или в виде зачета («Сдал» — «Не сдал»).

Созданный комплект билетов может быть исправлен или изменен преподавателем в любое время.

Работа с управляющей программой очень проста и может быть легко освоена препо­давателем. Возможна комплектация комплекса любым числом рабочих мест учащихся до 30.

ПЭЭТ учащихся также могут работать автономно (без подключения к сети класса).

Для установки оборудования комплекса не требуется никакой специальной квалификации. Достаточно лишь соединить рабочие места учащихся сетевыми проводами, имеющимися в комплекте, и подключить сетевой провод к компьютеру через адаптер.

Следует отметить, что использование в учебном процессе АЭК имеет явные преимущества перед использованием для автоматизации контроля знаний персональных компьютеров и многих других устройств аналогичного назначения. А именно:

1. АЭК универсален. Преподаватель не ограничен имеющимися у него компьютерными программами и может использовать любые, в том числе разработанные им самим, комплекты билетов по любым учебным предметам, легко менять условия проведения экзамена, устанавливать индивидуальный режим опроса для каждого рабочего места, одновременно проводить на разных рабочих местах экзамены по разным темам и даже по разным предметам.

2. Возможности АЭК позволяют формировать различные комплекты экзаменационных билетов из сборников тематических задач. При этом преподавателю не требуется каждый раз подготавливать экзаменационные карточки с билетами. Учащимся достаточно раздать сборники тематических задач, а вопросы доставшегося им билета (соответствующие номера тем и номера вопросов по темам) будут последовательно отображаться на индикато­рах ПЭЭТ на рабочих местах учащихся.

3. ПЭЭТ, используемые на рабочих местах учащихся, имеют значительно более низкую стоимость и более высокую надежность, чем персональные компьютеры, а применение персонального компьютера в качестве рабочего места преподавателя позволяет использовать широкие возможности ПЭВМ для управления сетью рабочих мест учащихся, обработки результатов экзаменов, изменения тематики и режима экзамена на каждом рабочем месте. В этом смысле АЭК по функциональным возможностям не только не уступает, а во многом и превосходит сеть персональных компьютеров. Небольшие размеры и простое подключение ПЭЭТ позволяют легко демонтировать сеть ПЭЭТ, переносить ее и снова устанавливать для использования в различных помещениях.

АОК и АЭК в составе Многофункционального Автоматизированного Комплекса могут работать как независимо друг от друга, так и совместно. Программное обеспечение МАК и содержательная часть вышеуказанных библиотек учебных фильмов позволяют реализовать оба варианта. В случае совместной работы контроль знаний осуществляется непосредственно в процессе обучения, что позволяет автоматически, эффективно и в кратчайшее время проверять усвояемость материала всеми учащимися, присутствующими на занятиях.

В дополнение к комплексу технических средств и учебных пособий, для оформления интерьеров кабинетов и уголков охраны труда, кабинетов безопасности движения предприятий, имеющих в своем составе автотранспорт, были разработаны и выпускаются тематические стенды по всем разделам и темам, которые охватывают вышеуказанные библиотеки учебных фильмов.

Основой тематических стендов являются цветные ламинированные и неламинированные (в фай­ловых папках) модули формата А4 (210х297 мм).

Из вышеуказанных модулей формируются разнообразные тематические стенды, которые дают возможность иллюстрировать части разделов, целые разделы или темы по соответствующим предметам.

Ламинированные модули и модули в файловых папках легко крепятся на любую поверхность (например, с помощью прозрачной клейкой ленты) и при необходимости также легко отделяются от любой поверхности без всяких повреждений.

В заключение отметим, что вышеуказанные Многофункциональные Автоматизированные Комплексы прошли экспертизу, одобрены и рекомендованы к применению специалистами Всероссийского центра охраны труда и ГИБДД МВД РФ, экспонировались на всероссийских и международных выставках, отмечены почетными дипломами и медалями.

В настоящее время Многофункциональные Автоматизированные Комплексы широко используются при оборудовании кабинетов и уголков по охране труда, кабинетов по безопасности дорожного движения, что позволяет эффективно и на современном техническом уровне решать вопросы обеспечения безопасности труда на предприятиях.

Тематические модульные стенды для оформления интерьеров помещений

Из вышеуказанных модулей формируются разнообразные тематические стенды, которые дают возможность иллюстрировать части разделов, целые разделы или темы по соответствующим предметам.

Вот некоторые виды стендов, которые можно разместить в кабинете по безопасности движения, для просмотра и наглядного изучения предмета.

Новая аптечка первой помощи:

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения
Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения
Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения
Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Движение автомобиля в транспортном потоке

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Поведение при неизбежности аварии

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Разметка

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Дорожные знаки:

Реферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движенияРеферат: Безопасность движения

Основные положения Конвенции о дорожных знаках и сигналах.

Данная Конвенция о дорожных знаках и сигналах была принята в Вене, 8 ноября 1968 г.

Договаривающиеся стороны, признавая, что единообразие дорожных знаков, сигналов и обозначений и разметки дорог в международном плане необходимо для облегчения международного дорожного движения и повышения безопасности на дорогах, согласились о нижеследующем:

1. При применении положений Конвенции термины имеют то значение, которое придается им в настоящей статье соглашения, т.е. такие понятия как:

— транспортное средство и т.д.

2. Предписания для водителей, правила поведения на дороге;

3. Разработаны нижеследующие приложения:

— Приложение 1. Предупреждающие знаки, за исключением знаков, устанавливаемых вблизи от перекрестков или железнодорожных переездов.

— Приложение 2. Знаки, регулирующие преимущественное право проезда на перекрестках, предупреждающие знаки, устанавливаемые вблизи от перекрестков, и знаки, регулирующие преимущественное право проезда на узких участках дорог.

— Приложение 3. Знаки, относящиеся к железнодорожным переездам.

— Приложение 4. Знаки, означающие обязательное предписание, за исключением знаков, относящихся к преимущественному праву проезда, остановке и стоянке.

— Приложение 5. Указательные знаки, за исключением знаков, относящихся к стоянке.

— Приложение 6. Знаки относящиеся к остановке и стоянке.

— Приложение 7. Дополнительные таблички.

— Приложение 8. Разметка дорог.

— Приложение 9. Цветное изображение сигнальных знаков, обозначений и табличек, о которых идет речь в приложениях 1 — 7.

4. Договаривающиеся стороны пришли к соглашению о порядке внесения изменений и поправок в действующую Конвенцию, о сроках их внесения и действия;

5. Введена единая для всей территории система и классификация дорожных знаков и обозначений, которая подразделяется на следующие виды:

а) знаки, предупреждающие об опасности: эти знаки имеют целью предупредить пользователей дороги о существовании опасности на дорогах и о характере этой опасности;

b) знаки, означающие обязательное предписание: эти знаки имеют целью уведомить пользователей дороги об обязательствах, ограничениях и специальных запрещениях, которые они должны соблюдать; они подразделяются на:

— знаки преимущественного права проезда;

— знаки запрещающие или ограничивающие;

с) указательные знаки: эти знаки имеют целью давать пользователям дороги по пути их следования необходимую информацию или другие полезные указания; они подразделяются на:

— предварительные указатели направлений;

— другие знаки, дающие водителям транспортных средств полезные указания;

— другие знаки, обозначающие объекты, которые могут быть полезны для пользователей дороги.

В тех случаях, когда настоящая Конвенция предоставляет возможность выбора между несколькими знаками или обозначениями:

а) Договаривающиеся стороны обязуются применять на всей своей территории лишь один знак или одно обозначение;

b) Договаривающиеся стороны должны попытаться достигнуть соглашения на региональном уровне, с тем чтобы был выбран тот же знак или то же обозначение;

Знаки устанавливаются таким образом, чтобы их легко и своевременно могли распознавать водители, для которых они предназначены. Обычно они устанавливаются на стороне дороги, соответствующей направлению движения; однако они могут быть помещены или повторены над проезжей частью дороги. Любой знак, установленный на стороне дороги, соответствующей направлению движения, должен быть повторен над проезжей частью или на противоположной стороне дороги, если местные условия таковы, что этот знак может не быть вовремя замечен водителями транспортных средств, для которых он предназначен.

Действие каждого знака распространяется на всю ширину проезжей части открытой для движения дороги, для тех водителей, для которых он предназначен. Однако действие знака может быть ограничено одной или несколькими полосами движения, разграниченными продольной разметкой на проезжей части.

Когда, по мнению компетентных органов, тот или иной знак, помещенный на обочине дороги с раздельными проезжими частями, является неэффективным, он может устанавливаться на разделительной полосе, и в этом случае его можно не повторять на обочине.

6. Для облегчения понимания знаков в международном плане система дорожных знаков и сигналов, установленная настоящей Конвенцией, основана на формах и цветах, характерных для каждой категории знаков, а также во всех случаях, когда это представляется возможным, на использовании графических обозначений, а не надписей. Если Договаривающиеся стороны считают необходимым внести в предусмотренные обозначения какие-либо изменения, эти изменения не должны менять основные характеристики сигнальных знаков. На знаке должны наноситься надписи не более, чем на двух языках

7. Была разработана классификация сигналов, предназначенных для регулирования движения транспортных средств общего пользования и только для пешеходов, их определение, назначение, оформление и расположение.

Сигналы подразделяются на:

немигающие огни ,

i) зеленый огонь означает разрешение движения ;

ii) желтый огонь означает запрещение движения , но позволяет закончить переход тем из них, которые уже вышли на проезжую часть;

iii) красный огонь означает запрещение выходить на проезжую часть;

мигающие огни.

i) один красный мигающий огонь или два попеременно мигающих красных огня, один из которых включается, когда другой выключается, помещенные на одной и той же колонке на одинаковой высоте и обращенные в одну и ту же сторону, означают, что транспортные средства на должны пересекать линию остановки или, если не имеется линии остановки, проезжать за светофор; эти огни применяются только на железнодорожных переездах и при въезде на разводные мосты или на пристани судов-паромов, а также для обозначения запрещения проезда в связи с выездом на дорогу пожарных автомобилей или приближением летательного аппарата, траектория которого пересекает на небольшой высоте автомобильную дорогу;

ii) желтый мигающий огонь или два попеременно мигающих желтых огня означают, что водители могут продолжать движение, но обязаны соблюдать при этом особую осторожность.

iii) зеленый мигающий огонь означает, что время, в течение которого пешеходы могут переходить через проезжую часть, истекает, и что незамедлительно появится красный огонь.

8. Для безопасности движения на дороге была отрегулирована разметка дорог, которая применяется в тех случаях, когда компетентные органы считают это необходимым с целью регулирования движения, предупреждения или ориентировки пользователей дороги. Эти обозначения могут применяться как самостоятельно, так и в сочетании с другими дорожными сигнальными знаками, с тем, чтобы усилить или уточнить их указания. Был определён порядок её нанесения и назначения.

Разметка дорог может быть:

9. Принято положение об обозначении и оборудовании железнодорожного переезда, его сигнализация и оформление.

Настоящая Конвенция открыта в Центральных Учреждениях Организации Объединенных Наций в Нью-Йорке до 31 декабря 1969 г. для подписания всеми государствами — членами Организации Объединенных Наций или членами любых специализированных учреждений, или членами Международного агентства по атомной энергии, или сторонами Статута Международного Суда и любым другим государством, приглашенным Генеральной Ассамблеей Организации Объединенных Наций стать стороной настоящей Конвенции.

Настоящая Конвенция подлежит ратификации. Ратификационные грамоты передаются на хранение Генеральному Секретарю Организации Объединенных Наций.

СССР ратифицировал настоящую Конвенцию Указом Президиума ВС СССР от 29 апреля 1974 г. N 5939-VIII с оговоркой и заявлениями

Настоящая Конвенция остается открытой для присоединения к ней любого из государств, указанных в п. 1 настоящей статьи. Документы о присоединении передаются на хранение Генеральному Секретарю.

Каждое государство может при подписании, ратификации настоящей Конвенции или при присоединении к ней, или в любой момент впоследствии заявить посредством нотификации, адресованной Генеральному Секретарю, что Конвенция становится применимой ко всем территориям или части территорий, за внешние сношения которых оно ответственно. Конвенция начинает применяться на территории или на территориях, указанных в нотификации, по истечении тридцати дней со дня получения Генеральным Секретарем упомянутой нотификации или в момент вступления Конвенции в силу в отношении государства, сделавшего нотификацию, если эта дата является более поздней.

Схема рационального движения автотранспорта.

Реферат: Безопасность движения

Безопасность движения на автомобильной дороге невозможно обеспечить только чисто строительными мероприятиями, не принимая мер по его организации, учитывающих неизбежные колебания интенсивности движения, изменения погоды и особенности восприятия водителями движения по дороге. Дорожные организации должны не только обеспечивать возможность движения по дороге транспортных потоков, но и управлять ими доступными средствами. При этом имеется в виду не оперативное регулирование движения светофорами или сигналами регулировщиков, а воздействие на избираемые водителями режимы движения посредством продуманного изменения дорожных условий с тем, чтобы обеспечить максимальное использование пропускной способности дороги и безопасность движения.

К дорожной стороне проблемы безопасности можно отнести следующие мероприятия по организации движения:

— разделение транспортных потоков по скоростям и назначению;

— регулирование скоростей в соответствии с дорожными условиями посредством дорожных знаков с постоянной или меняющейся информацией;

— обеспечение четкого использования автомобилями проезжей части;

— информация водителей и пассажиров о дорожных условиях, расположении населенных пунктов, маршрутах проезда транзитных автомобилей через крупные населенные пункты.

К регулированию движения относится управление движением автомобилей посредством знаков с переменной информацией, включаемых ЭВМ в соответствии с теорией движения транспортных потоков в целях установления оптимальных скоростей движения автомобилей, а также перераспределение транспортных потоков по параллельным маршрутам и по времени суток, переводя отдельные виды перевозок на ночное время.

Организация движения позволяет повысить его безопасность во многих случаях без капитальной перестройки дорог только путем приведения скорости движения по ним автомобилей в соответствие с их транспортно-эксплуатационными качествами. Мероприятия по организации движения, как и все инженерные решения, в своей основе варианты, поскольку каждый желаемый эффект, например снижение скорости движения автомобилей, может быть достигнут рядом способов.

При сравнении вариантов организации движения следует учитывать как стоимость их осуществления, так и техническую эффективность, принимая во внимание вероятный процент случаев отказа – ошибок водителей или неподчинения их запланированным мероприятиям. В связи с последним обстоятельством меры пассивного регулирования дорожными средствами должны сочетаться с контролем органами ГИБДД соблюдения водителями предписаний правил дорожного движения, особенно ограничения скоростей.

Исходя из всего перечисленного, схемы движения автобусных маршрутов разрабатываются таким образом, чтобы получилась наибольшая эффективность использования транспортных средств, уменьшилось количество пробок на дорогах, снизился грузовой поток.

Маршрут автобуса должен охватывать наиболее затребованные участки города, проходить по более многолюдным остановкам и перевозить как можно больше пассажиров. Должен быть востребованным, доступным, удобным для пассажиров.

Со времени появления в середине XIX века первых средств массового пассажирского транспорта и особенно после начала эры автомобилизации в начале XX века совершенствование транспортных средств всегда развивалось с учетом их безопасности движения как одного из главных критериев технического совершенства. В этом направлении безусловно достигнут существенный прогресс, чего нельзя сказать об условиях движения транспорта.

Эти условия в городах характеризуются тремя особенностями: наличием улично-дорожной сети, сложившейся в течение десятилетий и в целом не соответствующей требованиям современного транспорта; наличием пешеходного движения, которое по сути своей является относительно свободным и трудно сочетаемым с движением механических транспортных средств; постоянным ростом физических объемов городского движения.

На протяжении всего времени развития механических транспортных средств градостроители ищут пути сочетания движения транспорта и пешеходов на улично-дорожной сети городов. Эта проблема возникла, прежде всего, вследствие того, что города и пешеходное движение в них как форма жизнедеятельности существуют столетия. Реконструкция городов в соответствии с требованиями современного транспорта представляет долговременную и дорогостоящую задачу, в связи с чем одна из форм решения проблемы безопасности движения — регламентация условий движения пешеходов и транспорта, Правилами дорожного движения.

  1. СНиП 2.05.02 – 85 автомобильные дороги
  2. Г.И.Клинковштейн «Организация дорожного движения»
  3. В.И.Коноплянко «Организация и безопасность дорожного движения»
  4. Интернет-сайты:

Привет студент

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КУРСОВОЙ ПРОЕКТ

по дисциплине «Безопасность транспортных средств»

Содержание

1. Расчет основных показателей безопасности автотранспортного средства.

1.1. Активная безопасность.

1.1.1. Габаритные и весовые параметры автомобиля.

1.1.2. Тяговая динамичность.

1.1.3. Тормозная динамичность.

1.1.7. Оборудование рабочего места водителя.

1.2. Пассивная безопасность.

1.3. Послеаварийная безопасность.

1.4. Экологическая безопасность.

2. Подушка безопасности автомобиля ВАЗ.

2.1. Предлагаемые мероприятия по созданию автомобиля оборудованными

Список использованных источников.

Введение

Возрастание интенсивности автомобильного движения в условиях сложившейся в нашей стране дорожной сети выдвигает ряд проблем, связанных с разработкой мероприятий по обеспечению максимальной производительности и безопасности автомобильного транспорта. Как показывают результаты исследований, проведенных у нас и за рубежом, в основу решения данных проблем должно быть положено обеспечение нормальных условий для функционирования системы водитель- автомобиль-дорога-среда, т. е. обеспечение надежной связи водителя с управляемым автомобилем, с дорогой, на которой осуществляется движение и внешней средой исследующая надежность автомобиля и его работу в различных климатических условий. Работы по повышению безопасности движения в настоящее время ведутся в двух направлениях: во-первых, определяются условия, при которых не возможно возникновение дорожно-транспортного происшествия (ДТП), и разрабатывается комплекс требований, при соблюдении которых создаются эти условия; во-вторых, изыскиваются возможности, позволяющие максимально снизить тяжесть последствий ДТП, сохранить жизнь водителю и пассажирам. Первое направление получило название работы по активной безопасности, второе — работы по пассивной безопасности автомобильного транспорта.

Во всех странах мира с высоким уровнем автомобилизации ведутся интенсивные научно-исследовательские и опытно-конструкторские работы в области создания безопасного автомобиля.

Число жертв на автомобильных дорогах с каждым годом увеличивается. При правительствах многих стран созданы общегосударственные органы безопасности движения, проводится большая исследовательская работа по совершенствованию конструкции автомобилей, улучшению качества дорог и организации движения, профессиональному отбору водителей и их подготовке.

В настоящее время в результате научных исследований выбраны основные положения, принципы и рекомендации по безопасности движения. Эффективность многих рекомендаций проверена на практике. Однако подавляющее их большинство относится лишь к первому звену системы автомобиль — человек — дорога — среда (А-Ч-Д-С) — к автомобилю. Но вопросы безопасности автомобильного движения нельзя решать, ограничиваясь только улучшением конструкции автомобиля, без учета взаимодействия всех компонентов системы А-Ч-Д-С. Кроме того, все мероприятия по безопасности движения необходимо рассматривать в двух аспектах: с точки зрения активной и пассивной безопасности.

1. Расчет показателей безопасности автотранспортного средства

1.1. Активная безопасность

Для количественной характеристики активной безопасности применяют как широко распространенные показатели: минимальный тормозной путь, максимальное замедление, критические скорости по условиям заноса и опрокидывания и т.п.; так и новые показатели, специфические только для данного аспекта безопасности.

На активную безопасность автомобиля влияют следующие факторы:

— компоновочные параметры автомобиля (габаритные и весовые);

— оборудование рабочего места водителя, его соответствие требованиям эргономики.

1.1.1. Габаритные и весовые параметры автомобиля

К габаритным параметрам автомобиля относятся длина La, ширина Ba, высота Ha и база L, т. е. расстояние между передней и задней осями, к весовым

— полный вес автомобиля Ga, вес, приходящийся соответственно на передний G1 и задний G2 мосты.

При движении автомобиль подвергается воздействию различных случайных возмущений, стремящихся изменить характер движения. Вследствие этого даже на строго прямолинейных участках дороги автомобиль движется не прямолинейно, а по кривым больших радиусов. При этом значительную часть времени он находится под углом к оси дороги, и размер полосы, потребной для его движения, — динамический коридор, превышает его габаритную ширину. Ширина динамического коридора зависит от размеров автомобиля и его скорости (рисунок 1).

Реферат: Безопасность движения

Рисунок 1- Динамический коридор на прямолинейном участке дороги.

Эмпирическая зависимость между габаритной шириной автомобиля Ва,

скоростью его движения v и шириной динамического коридора Вк имеет следующий вид:

где v — в м/с, а Ва — в м.

В = 0,054 *17,721 +1,65 + 0,3 = 1,95 м

Ширина динамического коридора, необходимая для безопасного движения автомобилей с высокими скоростями, иногда значительно превышает ширину полосы движения, установленную Строительными нормами и правилами (СНиП). СНиП предусматривают для дорог с интенсивностью движения свыше 3000 автомобилей в сутки ширину полосы движения 3,75 м а для дорог с меньшей интенсивностью 3,0—3,5 м. Эти размеры не всегда обеспечивают безопасный разъезд автомобилей, поэтому водитель, чтобы избежать столкновения, вынужден снижать скорость.

Реферат: Безопасность движения

Рисунок 2 — Динамический коридор на криволинейном участке дороги.

Более заметно влияние геометрических параметров автомобиля на безопасность при криволинейном движении. Хотя при крутых поворотах скорости автомобиля обычно невелики и случайные возмущения незначительны, ширина динамического коридора может быть достаточно большой. Ее можно определить по формуле (рисунок 2):

В = R — R = R — л/- (П 2 + в) ,

где RH и Re — соответственно наружный и внутренний габаритные радиусы поворота автомобиля; L’ = L + С — расстояние от заднего моста до передней части автомобиля (L — база автомобиля; С — передний свес).

L = 2,46 + 0,761 = 3,221м,

В = 4,95 -^4,95 2 — (3,221) 2 +1,65 = 2,84 м

Согласно выражению (2) при L’ &RH величина Вк может значительно

превышать Ва, что вынуждает строителей расширять полосы движения на криволинейных участках дорог. В таблице 1 приведены геометрические и весовые параметры некоторых отечественных автомобилей.

Таблица 1 — Параметры автомобиля

Геометрические параметры, м

Весовые параметры, кН

Габаритная высота На имеет значение при проезде автомобилей под путепроводами и проводами контактной сети. Чрезмерно высокие транспортные средства (например, двухэтажные троллейбусы или автобусы, полуприцепы-панелевозы или автомобили-фургоны) с высоко расположенным центром тяжести испытывают значительные угловые колебания в поперечной плоскости. При движении по неровной дороге они могут верхним углом задеть за столб или мачту.

Масса транспортного средства для безопасности движения имеет, в основном, косвенное значение. Чем больше масса автомобиля, тем труднее им управлять. Тяжелый автомобиль медленно разгоняется и останавливается. На нем трудно выполнить сложный маневр. Чем больше масса транспортного средства, тем больше динамические нагрузки на дорогу, тем меньше срок службы покрытия. Поэтому, несмотря на очевидные преимущества применения подвижного состава большой массы, во всех странах строго соблюдают ограничение осевых нагрузок и полных масс транспортных средств. В РФ все автомобили разделены на три группы:

группа А — автомобили и автопоезда дорожного типа для дорог с усовершенствованным капитальным покрытием, имеющие осевые нагрузки до 10 тонн от одиночной оси и полную массу автомобиля до 30 тонн, автопоезда до 38 тонн (т.е. могут эксплуатироваться по дорогам общего пользования 1, 2, 3 категорий, а при специальном усилении дорожной одежды по дорогам 4 категории);

группа В — автомобили и автопоезда дорожного типа, для всей сети дорог общего пользования и имеющие осевые нагрузки до 6 тонн от одиночной оси и полную массу одиночного автомобиля до 22 тонн, автопоезда до 34 тонн (могут эксплуатироваться по всем дорогам общего пользования);

внедорожные — это автомобили, не допускаемые к эксплуатации по дорогам общего пользования и имеющие нагрузку от одиночной оси >10 тонн.

1.1.2. Тяговая динамичность

Определение мощности двигателя

Требуемая эффективная мощность определяется:

10000 10000 v — скорость движения автомобиля Ga — вес автомобиля

Ga = 1340 • 9,81 = 13145,4 Н F — площадь лобового сопротивления автомобиля

F = В • H = 1,402 • 1,4 = 1,9628 м 2 B — колея подвижного состава Н — наибольшая высота подвижного состава

vmax — максимальная скорость подвижного состава равная 25 м/с кв — коэффициент сопротивления воздуха т]тр — КПД трансмиссии

Расчет и построение внешней скоростной характеристики двигателя Наиболее полно возможности двигателя отражает внешняя скоростная характеристика двигателя, которая представляет собой зависимость мощности, крутящего момента и удельного расхода топлива от угловой скорости вращения коленчатого вала.

Установлен дизельный двигатель

®mrn = 100 с-1 ®max = 500 с-1

Для карбюратора без ограничителя принимаем:

Ne max = 1,1 • Nev = 1,1 • 79,84 = 87,824 кВт

Реферат: Безопасность движения

Реферат: Безопасность движения

Построение тяговой характеристики:

Подбираем шину Кама EVRO 127, который имеет следующие показатели:

Размер — 175/70R13 Ширина профиля — 177 мм Наружный диаметр — 584 мм Статический радиус — 263 мм

Указанные размеры даны в миллиметрах, в соответствии с этим рассчитываем радиус качения колеса по следующей формуле:

rk = (D / 2 + х • В • Л) • 0,001мм где D — посадочный размер;

В — ширина профиля шины;

x — принимаем для грузовых автомобилей равным 1

Л — коэффициент деформаций шины под воздействием вертикальной нагрузки и крутящего момента. Принимаем для радиальных шин равным 0,92.

Определяем мощность на колесе по формуле:

р = М е • imp • Лтр / r k , кН где imp — передаточное число трансмиссии

i mp = i Kn • i 0 = 0,784 • 6,28 = 4,92

i0 — передаточное отношение главной передачи

где comax — максимальная угловая скорость вращения коленчатого вала;

КП^ — минимальное передаточное число коробки передач vmax — максимальная скорость, развиваемая на высшей передаче rk — радиус качения колеса

Реферат: Безопасность движения

Динамическая характеристика автомобиля

Динамическим фактором по тяге называется отношение разности тяговой силы и силы сопротивления воздуха к весу подвижного состава:

где Pt — тяговая сила;

Pb — сила сопротивления воздуха;

G — вес автомобиля.

Динамической характеристикой подвижного состава называется зависимость динамического фактора по тяге от скорости на различных передачах.

Сила сопротивления воздуха:

Р ь = k • F • v2 (24)

где k — коэффициент сопротивления воздуха, Нс /м ;

F — площадь лобового сопротивления автомобиля, м 2 ; v — скорость движения автомобиля, км/ч.

Динамический фактор автомобиля соответствует дорожному сопротивлению, характеризуемому коэффициентом сопротивления дороги ¥, которое автомобиль способен преодолеть на данной передаче с заданной постоянной скоростью. В случае, если величина динамического фактора

автомобиля отличается от коэффициента сопротивления дороги, по которой

он движется, то это движение будет ускоренным (при D > ¥), либо

замедленным (при D j = — • (D — v м/с (25)

где g — ускорение свободного падения, м/с2;

° вр — коэффициент учета вращающихся масс автомобиля;

D — динамический фактор;

V — коэффициент сопротивления дороги.

О вр = 1 + а 1 • i + а 2 (26)

где а12 — распределение нагрузки между передней и задней осью;

ik — передаточное отношение передачи.

Принимаем значения G по таблице 3.

Таблица 3- Зависимость G от типа автомобилей

Реферат: Безопасность движения

Определение времени и пути разгона:

Время и путь разгона автомобиля до максимальной скорости являются самыми распространенными и наглядными характеристиками динамичности автомобиля. Их определение производят графоаналитическим способом с использованием графика ускорений автомобиля. При проведении расчетов полагаем, что разгон автомобиля на каждой передаче производится до достижения двигателем максимальных оборотов.

Кривые ускорений автомобиля, начиная с первой передачи, разбиваем на 6 интервалов скоростей (прилож. А). Для каждого интервала скоростей определяем среднее ускорение и изменение скорости в пределах интервала.

Предполагаем, что внутри интервала подвижной состав передвигается с постоянным средним ускорением, тогда время прохождения первого участка:

где t1 I — время прохождения первого участка, сек; v1 — скорость в конце участка, м/с; v! — скорость в начале участка, м/с; j1 — ускорение в начале участка, м/с 2 ;

jH — ускорение в конце участка, м/с 2 .

То же самое рассчитываем на остальных участках каждой передачи.

При переключении передачи происходит падение скорости, величина которой зависит от дорожных условии, скорости движения и параметров обтекаемости:

Av = 33 • tn • щ, м/с (28)

где ^ — время переключения передачи. Зависит от типа двигателя,

коробки передач и квалификации водителя.

Путь проходимый автомобилем за время переключения передачи:

AS l / = t П • V k (30)

Результаты вычислении заносим в таблицу 5.

Реферат: Безопасность движения

Рисунок 6 — График пути

1.1.3. Тормозная динамичность

Оценочными показателями тормозной динамичности автомобиля служат среднее замедление за период полного торможения и путь автомобиля от начала воздействия водителя на орган управления до остановки, т. е. за время ^ + tn + ?уст, где tc — время запаздывания тормозной системы; tn — время нарастания замедления; tyCT — интервал времени, в котором замедление постоянно.

В курсовой работе необходимо рассчитать минимально возможный тормозной путь (на горизонтальной дороге с асфальто- или цементобетонным покрытием, с полностью исправной тормозной системой, при 90%-ной глубине рисунка протектора шин), если начальная скорость автомобиля v0 составляет 60 км/ч.

Время tp — время реакции водителя — обычно находится в пределах 0,32,5 с. Оно зависит от квалификации водителя, его возраста, степени утомления и других факторов.

Время tc (время запаздывания тормозной системы) необходимо для устранения зазоров в соединениях тормозного привода и перемещения всех его деталей. Это время, зависящее от конструкции и технического состояния тормозного привода, колеблется в среднем от 0,2-0,3 с (гидравлический привод) до 0,6-0,8 с (пневматический привод). У автопоездов с пневматическим приводом тормозных механизмов оно может достигать 2-3 с. В течение времени (tp+ tc) автомобиль продолжает двигаться равномерно с начальной скоростью v0. В конце этого периода возникают тормозные силы, вызывающие замедление движения.

Продолжительность периода tn находим из выражения:

где b и Иц — расстояния соответственно от центра тяжести автомобиля до заднего моста и до поверхности дороги, м;

G — вес автомобиля, Н;

фх — коэффициент сцепления; для сухого асфальто- и цементобетонного покрытия он составляет 0,7-0,8;

L — база автомобиля;

К1 — скорость нарастания тормозных сил; для тормозных систем с гидроприводом она равна 15-30 кН/с, с пневмоприводом 25-100 кН/с.

14028,3 * 0,75 * (1,430 + 0,723 * 0,75) л

В заключительном периоде торможения, когда колеса обоих мостов заблокированы, установившееся замедление

где g — ускорение свободного падения.

J уст = 9,81 * 0,75 = 7,357 м/с;

Если известны tc, tK и _уусх, то тормозной путь можно рассчитать

следующим образом. Предположим, что в течение времени tn автомобиль

движется равнозамедленно с замедлением, равным 0,5/уст. При полном использовании сцепления всеми колесами автомобиля замедление определяют по формуле (6), тогда полный тормозной путь

мощность тормозных механизмов недостаточна для доведения передних колес до юза, то справедливы выражения (7), (8), однако время гя следует определять по формуле:

^ н = R x1max / K 1 ’

где Rximax — максимальная касательная реакция на колесах переднего моста, находится из справочных данных для конкретной модели автотранспортного средства.

Установившееся замедление в этом случае определяется не по формуле (6), а выражением:

где а — расстояние соответственно от центра тяжести автомобиля до переднего моста.

1.1.4. Устойчивость

Оценочными показателями устойчивости, определяемыми в данной курсовой работе, являются: скорость убук, максимально допустимая при прямолинейном движении автомобиля без пробуксовки ведущих колес;

максимально возможная (критическая) скорость уопр, с которой можно вести автомобиль без угрозы опрокидывания; максимально допустимый (критический) угол ропр косогора, по которому автомобиль может двигаться

без опрокидывания; максимальный угол подъема абук, при котором возможно равномерное движение автомобиля без буксования ведущих колес.

Скорость убук [м/с], максимально допустимая при прямолинейном движении автомобиля по горизонтальной дороге без пробуксовки ведущих колес, определяется на каждой передаче (с учетом найденного ранее по формуле (4) максимального ускорения jmax):

Скорость Убук уменьшается при уменьшении коэффициента сцепления, росте сопротивления дороги, а также при увеличении ускорения. Поэтому потеря курсовой устойчивости автомобилем наиболее вероятна на участках дороги со скользким неровным покрытием (укатанный снег, обледенелый асфальтобетон, булыжник) и подъемами. Если при прохождении подъема «с ходу» встретится участок, покрытый снежной или ледяной коркой, то даже небольшая поперечная сила может вызвать боковое скольжение заднего моста.

Поперечную устойчивость при криволинейном движении характеризует максимально возможная (критическая) скорость Уопр, с которой можно вести автомобиль без угрозы опрокидывания по горизонтальному участку.

Рассмотрим схему движения автомобиля на повороте (рисунок 3). Примем для простоты, что автомобиль является плоской фигурой, а увод и скольжение колес отсутствуют. Мгновенный центр О скоростей (центр поворота) автомобиля располагается в точке пересечения перпендикуляров к векторам скоростей средних точек мостов. При отсутствии увода и скольжения колес вектор скорости середины заднего моста параллелен плоскостям задних колес, поэтому точка О находится на продолжении оси заднего моста.

Реферат: Безопасность движения

Рисунок 3 — Схема поворота автомобиля.

Скорость Уопр определяем по формуле:

vonp =V BgR / ( 2h ,), (l 0 )

где 0 — угол поворота управляемых колес (в курсовой работе принимается менее 0,349 рад);

R — расстояние от точки О до середины заднего моста; при 0 6ук G( L — h^x) + G„p (L — 11Прф x)

где Gnp — вес прицепа, Н; Иир — высота сцепного устройства, м.

Чем меньше величина фх и чем больше масса прицепа по сравнению с массой тягача, тем меньше абук. Так, на дорогах с обледенелым покрытием буксование может наступить при абук = 2-3°, т. е. на относительно пологих подъемах.

Для одиночного автомобиля (типа 2х1) Gnp = 0:

t g а бук = 7″ ф ^ _ ’ (13)

бук 2,424 — 0,723*0,75

Для автомобиля со всеми ведущими мостами:

Такие автомобили могут преодолевать без потери продольной устойчивости весьма крутые подъемы даже при мокром и скользком покрытии.

1.1.5. Управляемость

Управляемостью называют способность автомобиля устойчиво сохранять заданное направление движения и вместе с тем быстро изменять его при воздействии водителя на рулевое управление.

Поворачиваемостью называют свойство автомобиля изменять направление движения без поворота управляемых колес. Есть две основных причины поворачиваемости: увод колес, вызываемый поперечной эластичностью шин, и поперечный крен кузова, связанный с эластичностью подвески. Соответственно различают шинную и креновую поворачиваемость автомобиля.

При наличии увода автомобиль может двигаться криволинейно, даже если угол поворота управляемых колес равен 0. Кривизна траектории зависит от соотношения 51 и 52 (углы увода переднего и заднего мостов).

Если 51 = 52, то шинную поворачиваемость автомобиля называют нейтральной. Хотя при этом траектория движения автомобиля о жесткими шинами не совпадает о траекторией движения автомобиля, имеющего нейтральную поворачиваемость, так как центры поворота в этих случаях занимают различные положения.

Если 51 > 52, то для движения автомобиля с эластичными шинами по кривой управляемые колеса нужно повернуть на больший угол, чем при жестких шинах. В этом случае шинную поворачиваемость автомобиля называют недостаточной. Автомобиль с недостаточной шинной поворачиваемостью устойчиво сохраняет прямолинейное направление движения.

Если угол 51 2 / (2Sa)

где v — скорость автомобиля непосредственно перед ударом, м/с;

sa — остаточная деформация автомобиля, которая при ударе о поверхность,

сравнимую по площади с лобовой площадью автомобиля, составляет:

легковые автомобили с несущим кузовом. 0,40-0,90 м

легковые автомобили с рамным основанием. 0,20-0,40 м

грузовые автомобили и автобусы. 0,15-0,30 м

Jp = 16,66 2 /(2*0,4) * 35 g Jp = 16,66 2 /(2*0,9) * 16 g

Автомобиль, врезается в бетонную стенку на скорости 60 км/ч (16,66

Перегрузка, действующая на пассажиров, составит 35 g, то есть незафиксированного ремнем человека, весящего 75 кг, ударит о приборную доску с силой в 2624 кг.

1.3. Послеаварийная безопасность

Послеаварийная безопасность — это свойство автомобиля уменьшать тяжесть последствий ДТП после остановки и предотвращать возникновение новых ДТП. К элементам послеаварийной безопасности автомобиля относятся конструктивные мероприятия и дополнительные приборы, предотвращающие возникновение опасных явлений, возникающих в результате ДТП.

Опасными явлениями, которые могут возникнуть в результате ДТП, следует, считать пожар, заклинивание дверей, заполнение водой салона автомобиля, если он затонул.

Требования к пожарной безопасности автомобиля и соответствующим элементам его конструкции регламентируются Правилами № 34-01 ЕЭК ООН. Этот документ регламентирует утечку топлива из топливного бака, заливной горловины и топливопроводов при фронтальном наезде автомобиля на препятствие со скоростью 13,9 м/с или наезде сзади со скоростью 10 м/с; утечка топлива в момент наезда не должна превышать 28 г/мин, а образование каплеобразной смеси также 28 г/мин. В ходе испытаний определяется объем жидкости, заменяющей топливо и вытекшей из бака при нарушении его герметичности, оценивается вероятность возникновения пожара и возможность его тушения имеющимися на автомобиле средствами.

Конструкции автомобилей массового производства должны отвечать следующим требованиям в отношении пожарной безопасности:

1) Предусматривается установка огнестойкой перегородки между топливным баком и пассажирским салоном. Элементы системы питания должны быть защищены от коррозии и предохранены от соприкосновения с

препятствиями на грунте. Все топливопроводы должны располагаться в защищенных местах (но не в салоне автомобиля); они не должны подвергаться каким-либо механическим воздействиям. Топливный бак следует изготовлять из огнестойкого материала; он не должен заряжаться статическим электричеством.

2) Заливная горловина не должна располагаться в салоне, багажнике или моторном отсеке и выступать над поверхностью кузова; крышка горловины должна быть огнестойкой.

3) Электропроводку следует размещать в специальных каналах или крепить к корпусу; она должна быть защищена от коррозии.

4) Для предотвращения быстрого распространения пламени и образования в салоне ядовитых газов (продуктов сгорания) регламентируются свойства материалов для внутренней отделки салона.

Кроме того, для повышения пожарной безопасности автомобилей на них устанавливают автоматически включающиеся огнетушители (как правило, пенные); штатные пенные или порошковые огнетушители; устройства, автоматически размыкающие электроцепь автомобиля при возникновении перегрузок определенной величины; устройства для автоматического впрыскивания в топливный бак веществ, превращающих бензин в трудносгораемое вещество (композиции галогенов, кремниевые соединения, специальные смолы).

В отношении заклинивания дверей автомобилей можно применять Правила № 11-02 ЕЭК ООН «Прочность замков и петель боковых дверей”. Однако следует учитывать, что если применяются дополнительные устройства, повышающие надежность замка в исправном состоянии (блокираторы дверей), то открыть дверь в деформированном виде, скорее всего, будет труднее. В ходе испытаний автомобиля на удар проверяется, чтобы двери (по одной с каждой стороны) открывались без применения инструмента.

Облегчение эвакуации людей из салона автомобиля, особенно автобуса, может быть достигнуто следующими мероприятиями:

— устройством запасных выходных люков в крыше автобуса (автомобиля);

— устройством запасных выходных люков в боковых стенках автобуса;

— снабжением дверей и люков дополнительными наружными замками и

— оборудованием салона молотками для разбивания стекол, пилами,

молотами, ножницами и другими инструментами для прорезывания

отверстий в стенках автобуса.

Предотвращение попадания воды в салон автомобиля при его затоплении пока не регламентируется международными стандартами. В какой-то мере может быть применен Российский ОСТ 37.001.248 на пылеводонепроницаемость. Единственный путь борьбы с этим явлением -повышение общей герметичности салона автомобиля. В этом направлении имеется много нерешенных вопросов. Следует отметить, что возможность спасения людей из затопленного автомобиля зависит не столько от его

конструкции (водонепроницаемости), сколько от состояния окон автомобиля (открыты или закрыты), умения людей плавать, от присутствия духа у водителя и пассажиров.

1.4. Экологическая безопасность

Экологическая безопасность — это свойство автомобиля, позволяющее уменьшать вред, наносимый участникам движения и окружающей среде в процессе его нормальной эксплуатации. Мероприятиями по уменьшению вредного воздействия автомобилей на окружающую среду следует считать снижение токсичности отработавших газов и уровня шума.

Основными загрязняющими веществами при эксплуатации автотранспорта являются:

— нефтепродукты при их испарении;

— продукты истирания шин, тормозных колодок и дисков сцепления, асфальтовых и бетонных покрытий.

Наибольший загрязняющий эффект из всего перечисленного оказывают отработавшие газы. К основным вредным компонентам отработавших газов автомобилей относятся окись углерода СО (сильное токсичное вещество), углеводороды СНх, окислы азота NOx (токсичны, вместе с углеводородами СН образует фотохимический смог), альдегиды (вредно действуют на нервную систему и органы дыхания), твердые частицы (сажа), окислы серы БОх, бензапирен, соли свинца (сильно действующие токсичные вещества).

В настоящий момент в России действуют допустимые нормы по токсичности выхлопных газов Евро II (согласно Правилам №49, 83 ЕЭК ООН), введенные с 1 января 2001 г.

В Европе этот стандарт действует с 1996 г., а нормы Евро III вступают в силу с 1 октября 2001 года. Причем все они будут обязательны для российских

транспортных средств, работающих за границей. Кроме того, если российский автомобиль выпущен после октября 2001 года, то он должен удовлетворять нормам Евро III.

В Евро II регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составляет (в г/кВт*ч): СО (окись углерода) — 4,0; СН (углеводороды) — 1,1; КОх (оксиды азота) — 7,0; РМ (твердые частицы) — 0,15.

В Евро III требования к токсичности выхлопа ужесточаются -регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составит (в г/кВт*ч): СО (окись углерода) — 2,0; СН (углеводороды) — 0,6; КОх (оксиды азота) — 5,0; РМ (твердые частицы) — 0,1. Для бензиновых двигателей легковых автомобилей уровень выбросов в г/км: CO — 2,3; CH — 0,2; NOx — 0,15.

При движении автомобиля шум создается двигателем внутреннего сгорания, шасси автомобиля (в основном механизмами трансмиссии и кузовом) и в результате взаимодействия шин с дорожным покрытием.

У технически исправного легкового автомобиля, имеющего небольшой пробег, основной источник шума — взаимодействие шин с дорожным покрытием, у грузового автомобиля шум шин составляет меньшую долю. В результате взаимодействия колеса с дорожным покрытием возникает шум, уровень и характеристики которого зависят от типа автомобиля, конструкции подвески, рисунка протектора, нагрузки на шину, ее жесткости и давления в ней.

Шум от работы двигателя внутреннего сгорания возникает во впускном тракте карбюратора и трубопроводе; в газораспределительном клапанном механизме в результате взаимодействия толкателей с клапанами; в зубчатых, а также в цепных и ременных передачах между коленчатым и распределительным валами; в системе охлаждения двигателя вследствие работы вентилятора, ременной передачи и водяного насоса; в выпускной системе. Шум возникает также в зубчатых зацеплениях коробки передач и ряде других второстепенных (по шуму) механизмов.

В элементах шасси технически исправного (нового) автомобиля и его кузове шум создается при работе механизмов трансмиссии элементах подвески и в результате обтекания кузова воздушным потоком при движении.

Шум, создаваемый отдельным автомобилем (автопоездом), регламентируется рядом нормативных документов, основными из которых являются Правила № 9 ЕЭК ООН. Шум выпускаемых отечественной автомобильной промышленностью транспортных средств в основном соответствует этим нормам.

2. Подушка безопасности автомобиля ВАЗ

Подушка, безопасности — система пассивной безопасности (SRS, Supplementary Restraint System) в транспортных средствах.

Представляет собой эластичную оболочку, которая наполняется воздухом либо другим газом. Подушки безопасности широко используются для смягчения удара в случае автомобильного столкновения.

Пневмоподушка дополняет ремень безопасности, уменьшая шанс удара головы и верхней части тела пассажира о какую-либо часть салона автомобиля. Также они снижают опасность получения тяжелых травм, распределяя силу удара по телу пассажира.

«Недавно проведенное исследование показало, что более чем 6.000 жизней было спасено благодаря подушкам безопасности».

Стандартные плечевые ремни безопасности были фактически убраны в автомобилях выпуска 70-х, оснащенных подушками безопасности, которые были призваны заменить ремни при лобовых столкновениях. Подушка. безопасности на стороне пассажира была расположена в нижней части панели, что позволяло ей также защищать колени пассажира. Нижняя часть панели на водительском месте также отличалась своей выпуклостью.

Дженерал Моторз назвала свою систему ACRS (Air Cushion Restraint System). Она включает в себя боковую подушку безопасности для пассажира в автомобилях выпуска 70-х и предусматривает двухступенчатое развертывание как и более поздние системы.

Принцип действия основывается на использовании простого акселерометра, инициирующего химическую реакцию в специальном баллончике. В результате реакции происходит быстрое наполнение газом нейлоновой подушки, которая уменьшает перегрузку, испытываемую пассажиром в момент резкой остановки при столкновении. Подушка также имеет небольшие вентиляционные отверстия, которые используются для относительно медленного стравливания газа после удара пассажира об неё.

Фронтальные подушки безопасности не должны развертываться при боковом ударе, ударе в заднюю часть либо перевороте автомобиля. Из-за того, что подушки безопасности срабатывают лишь раз и затем быстро сдуваются, они бесполезны при последующем столкновении. Ремни безопасности помогают снизить риск получения тяжелых травм во многих случаях. Они способствуют правильному расположению пассажира в кресле для максимизации эффективности подушки безопасности, а также защищают пристегнутых пассажиров при первом и последующих столкновениях. Таким образом, жизненно необходимо пристегиваться, даже в машинах, оборудованных подушками безопасности.

Хотя в 60-х и 70-х годах они рекламировались как потенциальная замена ремней, в нынешнее время подушки безопасности продаются как дополнительное средство защиты. Максимально эффективно они работают вместе с ремнями безопасности. Автопроизводители пересмотрели свою точку зрения насчет замены подушками безопасности столь необходимых ремней.

Общая схема работы

Система подушек безопасности включает в себя три главных компонента:

-непосредственно сам модуль подушки безопасности

-датчики определения удара

Некоторые системы могут также иметь переключатель on/off (вкл/выкл) для отключения в случае надобности.

Модуль подушки безопасности содержит в себе блок наполнения и легкую нейлоновую подушку. Модуль водительской подушки безопасности

находится в центре рулевого колеса, а пассажира — в приборной панели. Полностью наполненная газом водительская подушка имеет примерно диаметр большого надувного пляжного мячаШаблон:НЕТ АИ. Пассажирская же может быть в два-три раза больше, так как дистанция между сидящим справа пассажиром и приборной панелью гораздо больше нежели расстояние между водителем и рулем.

Датчики удара расположены в передней части автомобиля и/или салоне. Автомобили могут быть оснащены одним и более датчиками, которые активируются под воздействием сил, возникающих при лобовом или близком к лобовому ударе. Датчики измеряют степень замедления, с которой машина сбрасывает скорость. Именно поэтому замедление автомобиля, при котором датчики активируют подушки, варьируется в зависимости от характера столкновения. Подушки безопасности не должны срабатывать при внезапном торможении или при езде по неровным поверхностям. На самом деле, максимальный уровень замедления при экстренном торможении составляет лишь незначительную часть от уровня, достаточного для приведения подушек безопасности в действие.

Блок диагностики следит за исправностью системы подушек безопасности. Он активируется при включении зажигания автомобиля. Если блок диагностики обнаружит неисправность, загорится лампочка, предупреждающая водителя о необходимости доставки автомобиля в авторизованный центр обслуживания для диагностики системы подушек безопасности. Большинство блоков диагностики имеют устройства, которые содержат достаточно электрической энергии для приведения подушек безопасности в действие, если основная аккумуляторная батарея будет быстро выведена из строя при столкновении.

Некоторые автомобили без задних сидений, такие как пикапы и кабриолеты, либо задние сидения которых слишком малы для установки детских сидений, имеют ручной переключатель on/off (вкл/выкл) для пассажира справа, установленный на заводе. Такие переключатели для водительской и пассажирской подушки безопасности могут быть установлены квалифицированным обслуживающим персоналом по запросу владельца транспортного средства, если он отвечает определенным государственным критериям и имеет разрешение.

Сперва большинство автомобилей комплектовалось лишь одной водительской подушкой безопасности (DAB), установленной в рулевом колесе и защищающей водителя (который имеет больше шансов получить травмы). На протяжении 90-х годов подушки для передних пассажиров (PAB), а затем раздельные боковые подушки (SAB), помещаемые между пассажирами и дверью, стали обычной практикой.

Подушка может серьезно ранить или даже убить непристегнутого ребенка, который сидит слишком близко к ней или же был выброшен вперед силой экстренного торможения. По мнению специалистов для безопасности ребенка необходимы следующие условия:

Дети должны перевозиться в правильно установленном и соответствующем возрасту автомобильном кресле на заднем сиденье. Внимательно изучите соответствующий раздел в инструкции к автомобилю.

Младенцы, перевозимые в кресле с задним расположением, (в возрасте до одного года и весом менее 10 кг) не должны находиться на переднем пассажирском сиденье при включенной подушке безопасности.

Если ребенок старше одного года вынужден ехать на переднем сиденье, оборудованном подушкой безопасности со стороны пассажира, то он или она должны сидеть в детском кресле ориентированном по направлению движения, или пристегнуты с использованием коленного или плечевого ремня, а сиденье должно быть отодвинуто назад насколько возможно.

Подушки безопасности для пешеходов

Разрабатываются опытные образцы подушек безопасности, расположенных снаружи автомобиля, перед ветровым стеклом.

Такие подушки раскрываются от сигнала сенсора переднего бампера и предотвращают удар головы пешехода о лобовое стекло (около 80 % смертей при столкновении).

Подушки безопасности для велосипедистов. Дизайнеры Анна Хаупт (Anna Haupt) и Тереза Алстин (Terese Alstin) из Швеции разработали прототип подушки безопасности для мотоциклистов и велосипедистов под названием Hovding, которая надувается в случае падения и предохраняет голову и шею от серьезных травм. Подушка. находится внутри водонепроницаемого тканевого чехла и в сложенном состоянии крепится вокруг шеи пилота. В момент падения подушка расскрывается за 0.1 секунду, обеспечивая защиту не хуже, чем обычный мотоциклетный шлем.

Заключение

Развитие современных видов транспорта позволяет обществу добиваться существенной экономии труда и времени, сокращать продолжительность процессов производства и обращения товаров, высвобождать время для общественно-полезной деятельности, образования и отдыха. Надземный, наземный, подземный и водный — это те виды транспорта, которые сейчас осуществляют перевозку грузов и пассажиров. Наиболее экономичным и перспективным является автомобильный транспорт, бурное развитие которого обусловлено большой подвижностью, высокой скоростью перевозки грузов, доставки грузов к адресату без промежуточных перегрузок и др.

Высокое качество современных автомобилей и автомобильных дорог, а также хорошая организация движения во многом облегчают труд водителя, уменьшают потенциальную возможность возникновения дорожнотранспортных происшествий (ДТП). Однако аварийность на автомобильных дорогах продолжает оставаться очень высокой и является подлинным бедствий во многих странах с развитым автомобильным движением. По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в результате ДТП в мире погибают 1,3 млн. человек, 20-50 млн. получают травмы.

В России в практически каждый год от ДТП погибает свыше 35 тыс. человек, а увечья получают более 200 тыс. человек, причем 14 тыс. из них остались инвалидами навсегда.

Весь мир занят сейчас поисками мер борьбы с ДТП. Статистические данные последних десятилетий показывают, что в развитых странах смертность от ДТП ежегодно снижается, например в США за период с 1974 по 1998 год она уменьшилась на 27 %, а в странах с низким и среднем уровнем доходов, наоборот увеличивается. При правительствах многих стран созданы общегосударственные органы безопасности движения, проводится большая исследовательская работа по совершенствованию конструкции автомобилей, улучшению качества дорог и организации движения, профессиональному отбору водителей и их подготовке.

Список использованных источников доступен в полной версии работы

Чертеж к курсовому проекту:

Реферат: Безопасность движения

Скачать курсовую: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Источник http://www.bestreferat.ru/referat-254938.html
Источник Источник Источник Источник http://privetstudent.com/kursovyye/kursovye-transport/1515-kursovaya-bezopasnost-transportnyh-sredstv.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Модульная АГНКС. Революция в газовом оборудовании

Автомобильные газонаполнительные комплексы (АГНКС) становятся неотъемлемой частью современной инфраструктуры, способствуя переходу на более экологичные виды топлива. В рамках этой эволюции, модульные АГНКС выходят на передовой, предлагая инновационные решения и преимущества. Давайте рассмотрим, как эти системы меняют отрасль и в чем заключаются их основные преимущества. Преимущества Модульных АГНКС Модульные АГНКС предлагают ряд ключевых преимуществ, которые делают […]

Помощь системы ABS в управлении автомобилем

Помощь системы ABS в управлении автомобилем

Антиблокировочная тормозная система (ABS) — это электронная гидравлическая активная система защиты, которая поддерживает контролируемость и стабильность машины во время замедления, предотвращая блокирование колес. ABS исключительно действенная в пути с низким показателем сцепления, и в непогоду (гроза, лед). Анализ АБС — Antilock Brake System, которое буквально значит «антиблокировочная тормозная система». Посмотрим особенность процесса, важные элементы, а […]