Активная безопасность транспортных средств
Активная безопасность транспортных средств
Сущность активной безопасности автомобиля — отсутствие внезапных отказов в конструктивных системах. Соответствие тяговой и тормозной динамики автомобиля дорожным условиям и транспортным ситуациям. Требования, предъявляемые к системе активной безопасности.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 27.07.2013 |
Размер файла | 36,2 K |
- посмотреть текст работы
- скачать работу можно здесь
- полная информация о работе
- весь список подобных работ
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на Источник Источник Источник Источник http://www.allbest.ru/
Размещено на Источник Источник Источник Источник http://www.allbest.ru/
по дисциплине: РППЛС
тема: Активная безопасность транспортных средств
Появившись в конце 19 века, автомобиль уже через несколько лет стал опасным для жизни человека. В 1896 году было зафиксировано первое происшествие — наезд автомобиля на пешехода, в 1899 году такое же происшествие закончилось смертью человека.
Увеличение выпуска автомобилей и улучшение их эксплуатационных свойств, приводит к повышению скорости и интенсивности движения, плотности транспортных потоков. В результате этого усложняются условия дорожного движения, повышается аварийность.
Безопасность дорожного движения зависит от разных причин. Для удобства анализа все факторы, влияющие на дорожное движение и его безопасность условно делят на три взаимодействующих части: автомобиль, водитель, дорога. Из трех элементов системы водитель-автомобиль — дорога наибольшей потенциальной опасностью обладает транспортное средство.
Причиной дорожно-транспортного происшествия часто является несоответствие одного из элементов системы водитель-автомобиль-дорога остальным элементам. Многие происшествия возникают из-за того, что требования дорожной обстановки выше возможностей человеческого организма или конструкции транспортного средства. Воздействие на водителя дополнительных нагрузок, вызванных недостатками конструкции автомобиля или его неудовлетворительным состоянием, может резко ухудшить качество вождения, а в особенно неблагоприятных случаях привести к аварии. Напротив, удачная конструкция автомобиля, компенсирующая психофизиологические недостатки человека, может способствовать повышению безопасности дорожного движения.
Актуальностью данной темы является высокая аварийность на автомобильном транспорте вызванная несоответствием конструкций транспортных средств условиям их эксплуатации, которые непрерывно ухудшаются вследствие роста автомобильного парка, интенсивности движения и плотности транспортных потоков.
Одно из направлений решения проблемы снижения аварийности — повышение активной безопасности транспортных средств, совокупности свойств, обуславливающих способность транспортных средств, предупреждать или снижать вероятность возникновения дорожно-транспортных происшествий.
Объектом исследования является активная безопасность транспортного средства и ее свойства.
Предмет исследования составляет изучение требований, предъявляемых к системам активной безопасности.
Целью работы является изучение элементов, свойств и требований, предъявляемых к активной безопасности. Для достижения поставленной цели были сформулированы следующие задачи:
1) изучить общие положения активной безопасности транспортного средства;
2) рассмотреть вопрос о свойствах активной безопасности транспортного средства и основные требования, предъявляемые к системам активной безопасности.
Нормативная база включает в себя нормы Конституции РФ, Федеральные законы, Постановления Правительства, данные с официальных сайтов МВД РФ / www.mvd.ru, ГИБДД РФ /www.gibdd.ru
Общетеоретической базой явились труды специалистов по безопасности дорожного движения на автомобильном транспорте, а также литература в области обеспечения безопасности автотранспортных средств и состояния безопасности дорожного движения в Российской Федерации. Среди них можно выделить таких авторов, как: Венгеров И.А, Кузнецов А.П., Изосимов С.В., Маршакова Н.Н., Никульников Э.Н., Рябчинский А.И.
Структура работы вытекает из решаемых задач и представляет собой содержание, введение, 2 основных вопроса, заключение и список используемой литературы.
1. Сущность и свойства активной безопасности транспортного средства
Сущность активной безопасности автомобиля заключается в отсутствии внезапных отказов в конструктивных системах автомобиля, особенно связанных с возможностью маневра, а также в возможности водителя уверенно и с комфортом управлять механической системой автомобиль — дорога.
Если внимательно проанализировать данное утверждение, то можно выделить ключевую фразу «отказов в конструктивных системах автомобиля». Исходя из этого, ряд авторов выделяют такое понятие, как конструктивная безопасность автомобиля, под которой понимается свойство предотвращать ДТП, снижать тяжесть его последствий и не причинять вреда людям и окружающей среде.
Активная безопасность — это свойство автомобиля снижать вероятность возникновения ДТП или полностью его предотвращать. Оно проявляется в период, когда в опасной дорожной обстановке водитель еще может изменить характер движения автомобиля. Активная безопасность зависит от компоновочных параметров автомобиля (габаритных и весовых), его динамичности, устойчивости, управляемости и информативности и т.д. Что мы сегодня с Вами подробно и рассмотрим на лекции.
Сущность основных функций активной безопасности автомобиля — отсутствие внезапных отказов конструктивных систем автомобиля (отказная безопасность), особенно связанных с возможностью маневра, а также обеспечение возможности водителя уверенно, с комфортом управлять механической подсистемой «Автомобиль — Дорога» (эксплуатационная безопасность).
Важной функцией активной безопасности является соответствие тяговой и тормозной динамики автомобиля дорожным условиям и транспортным ситуациям, а также психофизиологическим особенностям водителя. Возможность осуществления маневра на ходу движения в основном зависит от тяговой и тормозной динамики автомобиля:
— тормозная динамика влияет на величину остановочного пути, который должен быть наименьшим и, кроме того, тормозная система должна позволять водителю очень гибко выбирать необходимую интенсивность торможения;
— тяговая динамика в значительной степени влияет на уверенность водителя в таких дорожно-транспортных ситуациях, как обгон, объезд, переезд перекрестков и пересечение автомобильных дорог, т.е. при маневрировании в плане.
В тех же ситуациях, когда торможение уже невозможно, тяговая динамика имеет первостепенное значение для выхода из критических ситуаций.
Основными качествами конструкции автомобиля, влияющими на активную безопасность, являются:
— устойчивость (способность автомобиля противостоять заносу и опрокидыванию в различных дорожных условиях при высоких скоростях движения);
— управляемость (эксплуатационные качества автомобиля, позволяющие осуществлять управление при наименьших затратах механической и физической энергии, при совершении маневров в плане для сохранения или задания направления движения);
— маневренность (качество автомобиля, характеризующееся величиной наименьшего радиуса поворота и габаритными размерами);
— стабилизация (способность элементов системы «ВАД» противостоять неустойчивому движению автомобиля или способность системы сохранить оптимальные положения естественных осей автомобиля при движении);
— сигнализация и освещение.
К основным эксплуатационным свойствам, характеризующим «поведение» легкового автомобиля на дороге, относятся:
динамичность, топливная экономичность, устойчивость, управляемость, проходимость и плавность хода.
Активная безопасность автомобиля, в отличие от пассивной, направлена в первую очередь на предупреждение аварии. Чтобы уберечь автомобиль от столкновения на трассе, эти системы воздействуют на подвеску, рулевое управление, тормоза. Использование анти-блокировочной системы (ABS) стало настоящим прорывом в этой области. Антиблокировочная система в настоящее время применяется на многих автомобилях как иностранного, так и отечественного производства. Роль ABS в активной безопасности автомобиля трудно переоценить, так как именно эта система предотвращает блокировку колес авто в момент торможения, что дает водителю возможность в сложной ситуации на дороге не потерять управление автомобилем См.: Никульников Э.Н., Лыюров М.В. Активная и пассивная безопасность. Журнал «Автомобильная промышленность», 2004 год, № 7. .
В начале 90-х годов компанией BOSCH был сделан очередной шаг на пути к автомобильной безопасности. Она разработала и внедрила электронную систему стабилизации движения (ESP). Первым автомобилем, который был оснащен этим устройством, сталMercedes S 600.
В наше время данная система стала обязательной частью комплектации автомобилей, которые проходят краш-тесты серии EuroNCAP, и такое решение было принято не зря. ESP — это именно то, что предотвращает занос автомобиля и удерживает его на безопасной траектории движения, а так же дополняет своей работой антиблокировочную систему ABS, контролирует работу трансмиссии и двигателя, следит за ускорением автомобиля и вращением рулевого колеса.
Немаловажной частью активной безопасности машины являются автомобильные шины, которые обязаны показывать не только высокие показатели комфорта и проходимости, но и надежное сцепление с дорогой как на мокрой дороге, так и в гололед. Большим шагом в развитии шинной продукции считается производство в 70-х годах прошлого века первых зимних шин.
Они отличались от обычных тем, что материалы, использованные при производстве такой резины, были адаптированы к воздействию низких температур, а рисунок покрышки обеспечивал оптимально надежное сцепление с заснеженной и обледенелой дорогой.
Необходимость постоянного развития систем автомобильной безопасности привело к тому, что над созданием новых технологий в данной области сотрудничают большинство мировых автопроизводителей. Качество безопасности на дорогах призвано в разы, повысить такой разрабатывающийся сейчас функционал, который сможет объединить автомобили различных марок в единую информационную сеть.
Используя технологии GPS, автомобили смогут обмениваться информацией о ситуации на дороге, сообщать друг другу свою скорость и траекторию передвижения, тем самым предотвращая столкновения и аварийные ситуации. Так же независимые эксперты отмечают, что за последние годы появились по-настоящему прогрессивные системы безопасности См.: Рябчинский А.И., Кисуленко Б.В., Морозова Т.Э. Регламентация активной и пассивной безопасности автотранспортных средств. Учебное пособие. — М.: Академия, 2006. .
Так, к примеру, компания Toyota Motors разработала систему, которая находится в салоне автомобиля и контролирует состояние водителя. Если система с помощью датчиков обнаруживает, что водитель отвлекся, стал рассеянным и даже начал засыпать за рулем, то срабатывает предупреждение, которое фактически будит водителя См.: Ильина И.Е., Козина И.М., Сидоркина Е.Ю., Разина О.В. Оценка безопасности транспортного средства категории М1. // Транспортная безопасность и технологии. — 2007 — № 6. — с.13. .
Таким образом, активная безопасность транспортного средства — это совокупность конструктивных и эксплуатационных свойств автомобиля, направленных на предотвращение дорожно-транспортных происшествий и исключение предпосылок их возникновения, связанных с конструктивными особенностями автомобиля.
2. Основные требования, предъявляемые к системам активной безопасности
Автомобиль должен быть безопасным в любых условиях. Требования конструктивной безопасности должны быть сохранены в течение всего срока службы автомашины. Каждый водитель должен уметь критически оценивать эти свойства и принимать меры к их сохранению.
Возможность безопасного управления зависит от умения водителя оценивать и использовать активную безопасность автомобиля. Овладев этим свойством, водитель сможет изменить характер движения автомобиля в начальной стадии опасной ситуации и предупредить ДТП.
Активная безопасность автомобиля — комплекс его свойств, снижающих возможность возникновения дорожно-транспортных происшествий.
Уровень активной безопасности определяется множеством параметров:
1) Безотказность автомобиля. Безотказность узлов, агрегатов и систем автомобиля является определяющим фактором активной безопасности. Особенно высокие требования предъявляются к надежности элементов, связанных с осуществлением маневра — тормозной системе, рулевому управлению, подвеске, двигателю, трансмиссии и т. д. Повышение безотказности достигается совершенствованием конструкций, применением новых технологий и материалов.
Безотказность — это свойство автомобиля непрерывно сохранять работоспособность в течение определенного времени или пробега. Для оценки безотказности применяются следующие основные показатели: вероятность безотказной работы; вероятность отказа; плотности вероятности безотказной работы; средняя наработка до отказа; средняя наработка на отказ; интенсивность отказов; параметр потока отказов, ведущая функция потока отказов.
2) Компоновка автомобиля. Переднемоторная — компоновка автомобиля, при которой двигатель расположен перед пассажирским салоном. Является наиболее распространенной и имеет два варианта: заднеприводную (классическую) и переднеприводную.
Последний вид компоновки получил в настоящее время широкое распространение благодаря ряду преимуществ перед приводом на задние колеса:
— лучшей устойчивости и управляемости при движении на большой скорости, особенно по мокрой и скользкой дороге;
— обеспечению необходимой весовой нагрузки на ведущие колеса;
— меньшему уровню шума, чему способствует отсутствие карданного вала.
В то же время переднеприводные автомобили обладают и рядом недостатков:
— при полной нагрузке ухудшается разгон на подъеме и мокрой дороге;
— в момент торможения слишком неравномерное распределение веса между осями (на колеса передней оси приходится 70-75 % веса автомобиля) и соответственно тормозных сил;
— шины передних ведущих управляемых колес нагружены больше, соответственно более подвержены износу;
— привод на передние колеса требует применения сложных узлов — шарниров равных угловых скоростей (ШРУСов);
— объединение силового агрегата (двигатель и коробка перемены передач) с главной передачей усложняет доступ к отдельным элементам.
Компоновка с центральным расположением двигателя, когда он находится между передней и задней осями, для легковых автомобилей является достаточно редкой. Она позволяет получить наиболее вместительный салон при заданных габаритах и хорошее распределение весовой нагрузки по осям См.: Трофимов С. Безопасность автотранспорта: научно-правовой аспект. // Юрист. — 2005 — № 8 — с. 12. .
Заднемоторная компоновка с расположением двигателя за пассажирским салоном была распространена на микролитражных автомобилях. При приводе на задние колеса она позволяла получить недорогой силовой агрегат и распределение такой нагрузки по осям, при которой на задние колеса приходится около 60 % веса. Это положительно сказывалось на проходимости автомобиля, но отрицательно на его устойчивости и управляемости, особенно на больших скоростях. Автомобили с этой компоновкой выпускаются в настоящее время практически только фирмами, традиционно использующими эту компоновку («Фольксваген», «Рено», «Порше» и др.).
3) Тормозная динамичность. Возможность предотвращения ДТП чаще всего связана с интенсивным торможением, поэтому необходимо, чтобы тормозные свойства автомобиля обеспечивали его эффективное замедление в любых дорожных ситуациях.
То есть тормозная динамичность — это способность автомобиля к экстренной остановке в случае внезапного появления препятствия на пути движения.
Для выполнения этого условия сила, развиваемая тормозным механизмом, не должна превышать силы сцепления с дорогой, зависящей от весовой нагрузки на колесо и состояния дорожного покрытия. Иначе колесо заблокируется (перестанет вращаться) и начнет скользить, что может привести (особенно при блокировке нескольких колес) к заносу автомобиля и значительному увеличению тормозного пути.
Чтобы предотвратить блокировку, силы, развиваемые тормозными механизмами, должны быть пропорциональны весовой нагрузке на колесо. Реализуется это с помощью применения на передней оси более эффективных дисковых тормозов, а на задней — барабанных, причем с ограничителем тормозных сил.
На современных автомобилях используется антиблокировочная система тормозов (АБС), корректирующая силу торможения каждого колеса и предотвращающая их скольжение.
Зимой и летом состояние дорожного покрытия разное, поэтому для наилучшей реализации тормозных свойств необходимо применять шины, соответствующие сезону.
Если рассмотреть такой автомобиль, как Toyota Auris то он оборудован полным набором средств активной безопасности, помогающих предотвратить неприятности на дороге. Для этого существуют интеллектуальные системы, помогающие водителю контролировать автомобиль в сложных дорожных условиях.
Все комплектации Тойота Аурис включают в себя усилитель экстренного торможения (BA) и антиблокировочную систему (ABS) с электронной системой распределения тормозного усилия (EBD). ABS предотвращает блокировку колес в случае пробуксовки, система EBD оптимизирует распределение тормозного усилия между задними и передними, правыми и левыми колесами, что позволяет своевременно выравнивать траекторию движения машины. Усилитель экстренного торможения (BA) повышает давление в тормозной системе в случае резкого, но недостаточно сильного нажатия на педаль тормоза водителем при экстренном торможении См.: Никульников Э.Н., Лыюров М.В. Активная и пассивная безопасность. Журнал «Автомобильная промышленность», 2004 год, № 7. .
4) Тяговая динамичность — характеризует способность автомобиля производительно выполнять транспортные функции. Чем динамичнее автомобиль, тем он способен быстрее разгоняться и двигаться с более высокой скоростью в разнообразных условиях движения. Повышение тяговой динамичности возможно за счет увеличения удельной мощности двигателя и улучшения его приемистости, что достигается уменьшением массы автомобиля, улучшением его обтекаемости, совершенствованием конструкции двигателя, трансмиссии и ходовой части. Автомобиль, обладающий относительно более высокой тяговой динамичностью, в реальных дорожных условиях обладает большим запасом мощности, который может расходоваться на преодоление дорожных сопротивлений и на разгон.
Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличивать скорость движения. От этих свойств во многом зависит уверенность водителя при обгоне, проезде перекрестков. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.
Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противопробуксовочная система (ПБС). При разгоне автомобиля она подтормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.
Следует отметить, что тяговая динамичность автомобиля зависит от его конструктивных параметров и качества дороги.
Из конструктивных факторов наибольшее значение имеют:
— форма скоростной характеристики двигателя,
— передаточные числа трансмиссии,
Форма скоростной характеристики. Карбюраторный двигатель имеет более выпуклую характеристику, чем дизель, что обеспечивает ему больший запас мощности при той же скорости. Следовательно, будет больше преодолеваемое сопротивление или развиваемое ускорение.
КПД трансмиссии. КПД трансмиссии оценивает величину непроизводительных потерь энергии. Уменьшение КПД, вызванное ростом потерь энергии на трение, приводит к уменьшению силы тяги на ведущих колесах. В результате снижается максимальная скорость автомобиля и максимальный коэффициент сопротивления дороги.
Применение в холодное время года летних трансмиссионных масел, имеющих большую вязкость, приводит к увеличению крутящегося момента, особенно заметному во время трогания автомобиля с места.
Передаточные числа трансмиссии. От передаточного числа главной передачи в большой степени зависит максимальная скорость автомобиля. От передаточного числа первой передачи зависит величина максимального сопротивления дороги, преодолеваемого при равномерном движении. Передаточные числа промежуточных ступеней подбирают таким образом, чтобы обеспечить максимальную интенсивность разгона.
Увеличение числа передач в коробке улучшает тяговую динамичность автомобиля. Хотя динамические факторы на первой и последних передачах в обоих случаях одинаковы, однако, сравнивая максимальные скорости на различных дорогах, видим преимущества четырехступенчатой коробки. Так, на дороге, характеризуемой коэффициентом сопротивления максимальная скорость автомобиля характеризуемых штриховой кривой, что вызывает ухудшение динамичности и топливной экономичности автомобиля.
Масса автомобиля. Повышение массы автомобиля приводит к увеличению силы инерции и сил сопротивления качению и подъему и, как следствие, к ухудшению динамичности автомобиля.
Обтекаемость автомобиля. Для современных легковых автомобилей характерны строгие прямолинейные очертания с плавными переходами, однако нередко зарубежные фирмы в рекламных целях выпускают автомобили с кузовами вычурной формы, имеющими необычный внешний вид и создающими повышенное сопротивление воздуха.
Для уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а выступающие детали устанавливают так, чтобы они не выходили за внешние очертания кузова. У гоночных автомобилей число выступающих частей уменьшают до минимума, а заднюю часть кузова делают вытянутой, добиваясь плавного обтекания ее воздухом.
Силу сопротивления воздуха у грузовых автомобилей можно уменьшить, закрыв грузовую платформу брезентом, натянутым между крышей кабины и задним бортом, или используя специальные щитки (обтекатели), уменьшающие завихрения воздуха.
5) Устойчивость автомобиля — способность сохранять движение по заданной траектории, противодействуя силам, вызывающим его занос и опрокидывание в различных дорожных условиях при высоких скоростях движения. активный безопасность автомобиль транспортный
Различают следующие виды устойчивости:
— поперечная при прямолинейном движении (курсовая устойчивость). Ее нарушение проявляется в рыскании (изменении направления движения) автомобиля по дороге и может быть вызвано действием боковой силы ветра, разными величинами тяговых или тормозных сил на колесах левого или правого борта, их буксованием или скольжением, большим люфтом в рулевом управлении, неправильными углами установки колес и т.д.;
— поперечная при криволинейном движении, нарушение которой приводит к заносу или опрокидыванию автомобиля под действием центробежной силы. Особенно ухудшает устойчивость повышение положения центра масс автомобиля (например, большая масса груза на съемном багажнике на крыше);
продольная. Ее нарушение проявляется в буксовании ведущих колес при преодолении затяжных обледенелых или заснеженных подъемов и сползании автомобиля назад. Особенно это характерно для автопоездов.
Важно отметить, что нарушение поперечной устойчивости при прямолинейном движении (курсовой устойчивости) проявляется в изменениях направления движения («рыскание» по дороге), что может быть вызвано следующими причинами:
— действием боковых сил (ветра, поперечной составляющей массы и др.);
— моментом, создаваемым различными по величине тяговой или тормозной силами на колесах левого и правого борта;
— буксованием или скольжением колес одного борта;
— резким разгоном, торможением или поворотом управляемых колес;
— неодинаковой регулировкой колесных тормозов;
— неисправностью в рулевом управлении (большой люфт, заклинивание), разрывом шин и др.
Автомобиль с плохой курсовой устойчивостью занимает полосу, существенно превышающую габаритную ширину. «Рыскание» по дороге требует от водителя постоянных корректирующих действий с целью удержания автомобиля на полосе движения.
Под потерей автомобилем устойчивости подразумевают опрокидывание или скольжение автомобиля. В зависимости от направления опрокидывания и скольжения различают продольную и поперечную устойчивость. Более вероятна и опасна потеря поперечной устойчивости, которая происходит под действием центробежной силы, поперечной составляющей силы тяжести автомобиля, силы бокового ветра, а также в результате ударов колес о неровности дороги.
Показателями поперечной устойчивости автомобиля являются максимально возможные скорости движения по окружности и углы поперечного уклона дороги (косогора).
Автомобиль может потерять поперечную устойчивость и во время прямолинейного движения, если водитель очень резко повернет управляемые колеса, хотя бы и на небольшой угол. Возникающая при этом центробежная сила может весьма быстро достигнуть значения силы сцепления шин с дорогой и вызвать занос.
Если скорость автомобиля велика, а коэффициент сцепления мал, то резкий поворот управляемых колес вызовет занос автомобиля в течение весьма короткого промежутка времени. В особенно неблагоприятных условиях это время может оказаться меньше времени реакции водителя и он не успеет принять мер для ликвидации начавшегося заноса. Чтобы избежать потери автомобилем устойчивости, необходимо плавно уменьшать скорость до начала поворота, в особенности на влажной и скользкой дороге.
6) Управляемость автомобиля — способность двигаться в направлении, заданном водителем.
Одной из характеристик управляемости является поворачиваемость — свойство автомобиля изменять направление движения при неподвижном рулевом колесе. В зависимости от изменения радиуса поворота под воздействием боковых сил (центробежной на повороте, силы ветра и т.п.) поворачиваемость может быть:
— недостаточной — автомобиль увеличивает радиус поворота;
— нейтральной — радиус поворота не изменяется;
— избыточной — радиус поворота уменьшается.
Различают шинную и креновую поворачиваемость.
Шинная связана со свойством шин двигаться под углом к заданному направлению при боковом уводе (смещении пятна контакта с дорогой относительно плоскости вращения колеса). При установке шин другой модели поворачиваемость может измениться и автомобиль на поворотах при движении с большой скоростью поведет себя иначе. Кроме того, величина бокового увода зависит от давления в шинах, которое должно соответствовать указанному в инструкции по эксплуатации автомобиля.
Креновая поворачиваемость связана с тем, что при наклоне кузова (крене) колеса изменяют свое положение относительно дороги и автомобиля (в зависимости от типа подвески). Например, если подвеска двухрычажная, колеса наклоняются в сторону крена, увеличивая увод.
Дальнейшим развитием электронных систем, повышающих активную безопасность, является система управления движением (ESP — Electronical Stability Program,). Она улучшает управляемость и устойчивость автомобиля и выполняет функции АБС и ПБС. ESP получает информацию от датчиков числа оборотов колес, угла поворота рулевого колеса, положения педали акселератора, угловой скорости рыскания, поперечного ускорения и сравнивает траекторию, задаваемую водителем, с действительной. При отклонении от заданного курса система притормаживает определенное колесо и «возвращает» автомобиль на заданную траекторию См.: Кузнецов А.П., Изосимов С.В., Маршакова Н.Н. Актуальные проблемы обеспечения дорожного движения на современном этапе. // Транспортное право. — 2007 — № 1 — с.19. .
7) Информативность — один из основных элементов активной безопасности, то есть способность автомобиля обеспечивать необходимой информацией водителя и других участников движения. Недостаточная информация от других транспортных средств, находящихся на дороге, о состоянии дорожного покрытия и т. д. часто становится причиной аварии.
Информативность автомобиля подразделяют на внутреннюю, внешнюю и дополнительную.
Внутренняя обеспечивает возможность водителю воспринимать информацию, необходимую для управления автомобилем.
Она зависит от следующих факторов:
1. Обзорность должна позволять водителю своевременно и без помех получать всю необходимую информацию о дорожной обстановке. Неисправные или неэффективно работающие омыватели, система обдува и обогрева стекол, стеклоочистители, отсутствие штатных зеркал заднего вида резко ухудшают обзорность при определенных дорожных условиях.
2. Расположение панели приборов, кнопок и клавиш управления, рычага переключения скоростей и т. д. должно обеспечивать водителю минимальное время для контроля показаний, воздействий на переключатели и т. п.
Внешняя информативность — обеспечение других участников движения информацией от автомобиля, которая необходима для правильного взаимодействия с ним.
система внешней световой сигнализации,
размеры, форма и окраска кузова.
Окраска автомобиля должна обеспечивать световой и цветовой контраст с дорожным покрытием. Автомобили, окрашенные в яркие и светлые тона, реже попадают в аварии, чем автомобили, имеющие защитную окраску — черную, серую, темно-зеленую (их движение кажется более медленным). Особенно велика вероятность столкновения с такими автомобилями в условиях ограниченной видимости: в тумане, в сумерках или во время дождя. Лучшие цвета, в которые следует окрашивать автомобили, — это оранжевый, желтый, красный и белый.
В темное время суток особенно хорошо видны поверхности, на которые нанесены краски с включением шаровой катадиоптрической оптики или металлических световозвращающих частиц. Значительно увеличивается дальность обнаружения автомобиля в свете фар (до 100 м) при наличии на кузове световозвращающих участков, создаваемых путем нанесения специальных красок.
К цветографической отделке внешней поверхности автомобиля предъявляются два требования:
— сигнальность, т.е. выделение автомобиля из транспортного потока;
— опознаваемость, т.е. обозначение при помощи цвета и маркировки назначения автомобиля (например, автомобили спецслужб).
Цвета высокой чистоты с большими коэффициентами отражения (яркие), а также многоцветовая гамма при кратковременном наблюдении действуют возбуждающе на водителя, что способствует выделению автомобиля в транспортном потоке. При длительном наблюдении такие цвета оказывают резко утомляющее действие. Таким образом, красный и желтый цвета и их основные оттенки следует применять для окраски небольших по размеру автомобилей. Грузовые автомобили, автопоезда и автобусы необходимо окрашивать в так называемые холодные цвета (зеленый, голубой, синий и их оттенки) или темные цвета. Это снижает напряжение зрения и уменьшает утомляемость водителей встречных автомобилей. С этой же целью следует окрашивать в темные цвета с малым коэффициентом отражения части автомобилей, находящиеся постоянно в поле зрения водителя (капот, задняя часть кузова).
Неисправные указатели поворотов, стоп-сигналы, габаритные огни не позволят другим участникам дорожного движения вовремя распознать намерения водителя и принять правильное решение.
Передаваемая с помощью светосигнальных приборов информация должна отвечать следующим требованиям: надежно восприниматься в любое время суток и при любых метеорологических условиях; быть понятной для всех участников движения, включая и пешеходов; полностью исключать двойственное толкование; быть надежной.
В настоящее время установился минимальный комплект обязательных для каждого транспортного средства светосигнальных приборов:
— дневные зодовые огни,
— фонарь освещения номерного знака.
Дополнительная информативность — свойство автомобиля, позволяющее эксплуатировать его в условиях ограниченной видимости: ночью, в тумане и т. д. Она зависит от характеристик приборов системы освещения и других устройств (например, противотуманных фар), улучшающих восприятие водителем информации о дорожно — транспортной ситуации.
8) Комфортабельность — определяет время, в течение которого водитель способен управлять автомобилем без утомления. Увеличению комфорта способствует использование автоматических коробок перемены передач, регуляторов скорости (круиз-контроль) и т. д. В настоящее время выпускаются автомобили, оборудованные адаптивным круиз-контролем. Он не только автоматически поддерживает скорость на заданном уровне, но и при необходимости снижает ее вплоть до полной остановки автомобиля.
Поэтому как компоновка места водителя, так и размещение органов управления и приборов могут иметь определенное значение для обеспечения безопасности при движении. Компоновка окружающей водителя среды может быть в различной степени приспособлена к анатомическому строению и психике человека. И все это влияет на вероятность совершения ошибочных действий в сторону их сокращения или увеличения, особенно когда эта компоновка не приспособлена к потребностям человека.
Так компоновка, в частности, включает в себя:
— расстояние до руля,
— рычаги переключения передач, педалей и ручного тормоза,
— расстояние до панели приборов и органов управления, как на панели приборов, так и на колонке руля, то есть функции контроля дальнего света, указателей направления движения, работы стеклоочистителей и стеклоомывателей, омывателей передних фар, обогревателей стекла, вентиляции и заборника свежего воздуха, освещения приборов и салона, световых и звуковых сигналов, замков ремней безопасности, сигнальных предупредительных ламп и т.п.,
— обзор спереди, сзади и по бокам;
— размещение и регулировка различных контрольных зазоров;
— сиденье водителя и его регулируемость.
Таким образом, можно сделать вывод, что системы активной безопасности позволяют эффективно снизить вероятность столкновений на дорогах, поэтому активная безопасность представляет собой важную сферу для исследований и разработок. К основным требованиям, предъявляемым к системам автомобиля, определяющим его активную безопасность относятся:
1) Безотказность автомобиля;
2) Компоновка автомобиля;
3) Тормозная динамичность;
4) Тяговая динамичность;
5) Устойчивость автомобиля;
6) Управляемость автомобиля;
7) Информативность автомобиля;
8) Комфортабельность автомобиля.
Заключение
Подводя итоги, можно сделать следующие выводы. Наряду с положительной ролью, которую автомобильный транспорт играет в развитии экономики, существуют и негативные факторы, связанные с процессом автомобилизации (например, загрязнение окружающей среды, возникновение градостроительных проблем, связанных с обустройством городских улиц и дорог для проезда транспорта и выделением площадок для стоянок транспортных средств, рост дефицита нефтепродуктов и т.д.). К числу наиболее отрицательных факторов, обусловленных автомобилизацией относятся дорожно-транспортные происшествия (ДТП), их последствия, характеризующиеся ранением и гибелью людей, материальным ущербом от повреждения транспортных средств, грузов, дорожных или иных сооружений, выплатой пособий по инвалидности и временной нетрудоспособности, а также отрицательное влияние на окружающую среду, вызывающее неизбежное ухудшение экологической обстановки.
Несмотря на осуществляемые мероприятия по предотвращению вероятности ДТП, в Российской Федерации в результате ДТП ежедневно погибает около 90 человек. Автомобильный транспорт является наиболее опасным из всех видов транспорта См.: Кривчук А.С., Синькевич Н.А. Проблемы совершенствования системы безопасности дорожного движения. // Транспортное право. — 2005 — № 4 — с.12. .
Материальный ущерб от ДТП в экономически развитых странах достигает 10 % годового национального дохода.
Следовательно, решение проблемы повышения безопасности дорожного движения (БДД) имеет большую социальную и экономическую значимость и является одной из кардинальных проблем автомобилизации.
Основной проблемой отечественного обеспечения активной и пассивной безопасности транспортных средств является отсутствие системы ее правовой и технической регламентации.
В целях решения данной проблемы принята Федеральная целевая программа «Повышение безопасности дорожного движения в 2006-2012 годах», данная программа позволит сократить в 1,5 раза количества лиц, погибших в результате дорожно-транспортных происшествий в 2012 году по сравнению с 2004 годом. Это позволит Российской Федерации приблизиться к уровню безопасности дорожного движения, характерному для стран с развитой автомобилизацией населения, снизить показатели аварийности и, следовательно, уменьшить социальную остроту проблемы, а также создать систему регламентации определения активной и пассивной безопасности автотранспортных средств в РФ. А одним из первоочередных мероприятий является повышение уровня активной и пассивной безопасности транспортных средств, усиление контроля за наличием, исправностью и применением ремней безопасности, детских удерживающих сидений и иных средств безопасности.
Таким образом, в работе были проанализированы основные положения вопроса активной безопасности транспортного средства.
Список использованной литературы
1. Конституция РФ, 1993.
2. Федеральный закон «О безопасности дорожного движения« (№ 196-ФЗ от 10.12.1995, редакция от 18.12.2006).
3. Федеральный закон «О техническом регулировании» от 27 декабря 2002 г. № 184-ФЗ.
4. Постановление Правительства РФ от 10 сентября 2009 г. № 720 «Об утверждении технического регламента о безопасности колесных транспортных средств».
5. Постановление Правительства от 20.02.2006 г. № 100 «О Федеральной Целевой программе «Повышение безопасности дорожного движения в 2006-2012 годах».
6. Постановление Правительства РФ от 23.10.1993 г. № 1090 «О правилах дорожного движения»
7. ГОСТ Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами. Нормы и методы контроля при оценке технического состояния. — М.: ИПК Издательство стандартов, 2003.
8. ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки». — М.: ИПК Издательство стандартов, 2002.
9. ГОСТ Р 52160-2003 Автотранспортные средства, оснащенные двигателями с воспламенением от сжатия. Дымность отработавших газов. Нормы и методы контроля при оценке технического состояния: (утвержден постановлением Госстандарта РФ от 27 марта 2003 г. № 100-ст.).
10. Афанасьев, Л.Л. Конструктивная безопасность автомобиля / Л.Л. Афанасьев, А.В. Дъяков, В.А. Иларионов. — М.: Машиностроение, 2003.
11. Батяев А.А. Комментарий к Федеральному закону от 01.01.2007 г. № 196-ФЗ «О безопасности дорожного движения» // Консультант Плюс.
12. Ильина И.Е., Козина И.М., Сидоркина Е.Ю., Разина О.В. Оценка безопасности транспортного средства категории М1. // Транспортная безопасность и технологии. — 2007 — № 6. — с.143.
13. Квитчук А.С., Синькевич Н.А. Проблемы совершенствования системы безопасности дорожного движения. // Транспортное право. — 2007 — № 4. — с. 179.
14. Кисуленко Б.В. Первые глобальные технические правила — новый этап в обеспечении безопасности автотранспортных средств. // Автомобильная промышленность. — 2006 — № 5. — с.192.
15. Кривчук А.С., Синькевич Н.А. Проблемы совершенствования системы безопасности дорожного движения. // Транспортное право. — 2005 — № 4 — с.121.
16. Кузнецов А.П., Изосимов С.В., Маршакова Н.Н. Актуальные вопросы обеспечения безопасности дорожного движения на современном этапе. // Транспортное право. — 2006 — № 1 — с.261.
17. Кузнецов А.П., Изосимов С.В., Маршакова Н.Н. Актуальные проблемы обеспечения дорожного движения на современном этапе. // Транспортное право. — 2007 — № 1 — с.191.
18. Методическое пособие по курсу подготовки специалистов по безопасности дорожного движения на автомобильном транспорте. Под общей редакцией директора Государственного научно-исследовательского института автомобильного транспорта Венгерова И.А. М., 2000.
19. Никульников Э.Н., Лыюров М.В. Активная и пассивная безопасность. Журнал «Автомобильная промышленность», 2004 год, № 7.
20. Никитас Д.А. Состояние безопасности дорожного движения в Российской Федерации: Проблемы, профилактика. // Российский следователь — 2006 — №9 — с.256.
21. Никульников Э.Н., Лыюров М.В. Активная и пассивная безопасность. // Автомобильная промышленность. — 2005 — № 7 — с.234.
22. Рябчинский А.И., Кисуленко Б.В., Морозова Т.Э. Регламентация активной и пассивной безопасности автотранспортных средств. Учебное пособие. — М.: Академия, 2006. — 432 с.
23. Синькевич Н.А. Мероприятия, направленные на повышение правового сознания и предупреждение опасного поведения участников дорожного движения. // Транспортное право. — 2007 — № 11 — с.143.
24. Трофимов С. Безопасность автотранспорта: научно-правовой аспект. // Юрист. — 2005 — № 8 — с. 126.
25. Трофимов С. Правовые аспекты обеспечения безопасности использования автомобильного транспорта. // Транспортное право. — 2005 — № 3 — с. 159.
26. Официальный сайт МВД РФ / www.mvd.ru
27. Официальный сайт ГИБДД РФ /www.gibdd.ru
Размещено на Allbest.ru
Подобные документы
Сущность активной безопасности автомобиля. Основные требования, предъявляемые к системам автомобиля, определяющим его активную безопасность. Компоновка автомобиля, тормозная динамичность, устойчивость и управляемость, информативность и комфортабельность.
лекция [43,5 K], добавлен 07.05.2012
Изучение конструктивной безопасности автомобиля на основе анализа его управляемости и весовых параметров. Процесс столкновения автомобилей, определение показателей деформации и опасности. Характеристика и параметры пассивной и активной безопасности.
курсовая работа [92,9 K], добавлен 16.01.2011
Технические характеристики автомобиля ГАЗ-66-11. Активная безопасность автомобиля: тормозная динамичность, устойчивость, управляемость (поворачиваемость), комфортность. Пассивная безопасность автомобиля: ремни и подушки безопасности, подголовники.
контрольная работа [1,2 M], добавлен 20.01.2011
Общие требования создания безопасного автомобиля. Техническая характеристика изучаемого автомобиля, его скоростная и тормозная динамичность. Исследование и оценка устойчивости и управляемости. Пожарная и экологическая безопасность заданного транспорта.
курсовая работа [466,7 K], добавлен 04.02.2014
Назначение, общее устройство тормозных систем автомобиля. Требования тормозному механизму и приводу, их виды. Меры безопасности относительно тормозной жидкости. Материалы, применяемые в тормозных системах. Принцип работы гидравлической рабочей системы.
контрольная работа [552,2 K], добавлен 08.05.2015
Требования к техническому состоянию систем активной безопасности. Условия проведения проверки технического состояния тормозного управления. Оборудование для диагностирования систем активной безопасности. Стенды регулировки углов установки колес.
дипломная работа [1,4 M], добавлен 29.11.2010
Общее определение послеаварийной безопасности автомобиля как его свойства снижать тяжесть последствий дорожно-транспортного происшествия в конечной фазе и после аварии. Конструктивные мероприятия, направленные на повышение послеаварийной безопасности.
реферат [280,3 K], добавлен 24.09.2014
Привет студент
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
КУРСОВОЙ ПРОЕКТ
по дисциплине «Безопасность транспортных средств»
Содержание
1. Расчет основных показателей безопасности автотранспортного средства.
1.1. Активная безопасность.
1.1.1. Габаритные и весовые параметры автомобиля.
1.1.2. Тяговая динамичность.
1.1.3. Тормозная динамичность.
1.1.7. Оборудование рабочего места водителя.
1.2. Пассивная безопасность.
1.3. Послеаварийная безопасность.
1.4. Экологическая безопасность.
2. Подушка безопасности автомобиля ВАЗ.
2.1. Предлагаемые мероприятия по созданию автомобиля оборудованными
Список использованных источников.
Введение
Возрастание интенсивности автомобильного движения в условиях сложившейся в нашей стране дорожной сети выдвигает ряд проблем, связанных с разработкой мероприятий по обеспечению максимальной производительности и безопасности автомобильного транспорта. Как показывают результаты исследований, проведенных у нас и за рубежом, в основу решения данных проблем должно быть положено обеспечение нормальных условий для функционирования системы водитель- автомобиль-дорога-среда, т. е. обеспечение надежной связи водителя с управляемым автомобилем, с дорогой, на которой осуществляется движение и внешней средой исследующая надежность автомобиля и его работу в различных климатических условий. Работы по повышению безопасности движения в настоящее время ведутся в двух направлениях: во-первых, определяются условия, при которых не возможно возникновение дорожно-транспортного происшествия (ДТП), и разрабатывается комплекс требований, при соблюдении которых создаются эти условия; во-вторых, изыскиваются возможности, позволяющие максимально снизить тяжесть последствий ДТП, сохранить жизнь водителю и пассажирам. Первое направление получило название работы по активной безопасности, второе — работы по пассивной безопасности автомобильного транспорта.
Во всех странах мира с высоким уровнем автомобилизации ведутся интенсивные научно-исследовательские и опытно-конструкторские работы в области создания безопасного автомобиля.
Число жертв на автомобильных дорогах с каждым годом увеличивается. При правительствах многих стран созданы общегосударственные органы безопасности движения, проводится большая исследовательская работа по совершенствованию конструкции автомобилей, улучшению качества дорог и организации движения, профессиональному отбору водителей и их подготовке.
В настоящее время в результате научных исследований выбраны основные положения, принципы и рекомендации по безопасности движения. Эффективность многих рекомендаций проверена на практике. Однако подавляющее их большинство относится лишь к первому звену системы автомобиль — человек — дорога — среда (А-Ч-Д-С) — к автомобилю. Но вопросы безопасности автомобильного движения нельзя решать, ограничиваясь только улучшением конструкции автомобиля, без учета взаимодействия всех компонентов системы А-Ч-Д-С. Кроме того, все мероприятия по безопасности движения необходимо рассматривать в двух аспектах: с точки зрения активной и пассивной безопасности.
1. Расчет показателей безопасности автотранспортного средства
1.1. Активная безопасность
Для количественной характеристики активной безопасности применяют как широко распространенные показатели: минимальный тормозной путь, максимальное замедление, критические скорости по условиям заноса и опрокидывания и т.п.; так и новые показатели, специфические только для данного аспекта безопасности.
На активную безопасность автомобиля влияют следующие факторы:
— компоновочные параметры автомобиля (габаритные и весовые);
— оборудование рабочего места водителя, его соответствие требованиям эргономики.
1.1.1. Габаритные и весовые параметры автомобиля
К габаритным параметрам автомобиля относятся длина La, ширина Ba, высота Ha и база L, т. е. расстояние между передней и задней осями, к весовым
— полный вес автомобиля Ga, вес, приходящийся соответственно на передний G1 и задний G2 мосты.
При движении автомобиль подвергается воздействию различных случайных возмущений, стремящихся изменить характер движения. Вследствие этого даже на строго прямолинейных участках дороги автомобиль движется не прямолинейно, а по кривым больших радиусов. При этом значительную часть времени он находится под углом к оси дороги, и размер полосы, потребной для его движения, — динамический коридор, превышает его габаритную ширину. Ширина динамического коридора зависит от размеров автомобиля и его скорости (рисунок 1).
Рисунок 1- Динамический коридор на прямолинейном участке дороги.
Эмпирическая зависимость между габаритной шириной автомобиля Ва,
скоростью его движения v и шириной динамического коридора Вк имеет следующий вид:
где v — в м/с, а Ва — в м.
В = 0,054 *17,721 +1,65 + 0,3 = 1,95 м
Ширина динамического коридора, необходимая для безопасного движения автомобилей с высокими скоростями, иногда значительно превышает ширину полосы движения, установленную Строительными нормами и правилами (СНиП). СНиП предусматривают для дорог с интенсивностью движения свыше 3000 автомобилей в сутки ширину полосы движения 3,75 м а для дорог с меньшей интенсивностью 3,0—3,5 м. Эти размеры не всегда обеспечивают безопасный разъезд автомобилей, поэтому водитель, чтобы избежать столкновения, вынужден снижать скорость.
Рисунок 2 — Динамический коридор на криволинейном участке дороги.
Более заметно влияние геометрических параметров автомобиля на безопасность при криволинейном движении. Хотя при крутых поворотах скорости автомобиля обычно невелики и случайные возмущения незначительны, ширина динамического коридора может быть достаточно большой. Ее можно определить по формуле (рисунок 2):
В = R — R = R — л/- (П 2 + в) ,
где RH и Re — соответственно наружный и внутренний габаритные радиусы поворота автомобиля; L’ = L + С — расстояние от заднего моста до передней части автомобиля (L — база автомобиля; С — передний свес).
L = 2,46 + 0,761 = 3,221м,
В = 4,95 -^4,95 2 — (3,221) 2 +1,65 = 2,84 м
Согласно выражению (2) при L’ &RH величина Вк может значительно
превышать Ва, что вынуждает строителей расширять полосы движения на криволинейных участках дорог. В таблице 1 приведены геометрические и весовые параметры некоторых отечественных автомобилей.
Таблица 1 — Параметры автомобиля
Геометрические параметры, м
Весовые параметры, кН
Габаритная высота На имеет значение при проезде автомобилей под путепроводами и проводами контактной сети. Чрезмерно высокие транспортные средства (например, двухэтажные троллейбусы или автобусы, полуприцепы-панелевозы или автомобили-фургоны) с высоко расположенным центром тяжести испытывают значительные угловые колебания в поперечной плоскости. При движении по неровной дороге они могут верхним углом задеть за столб или мачту.
Масса транспортного средства для безопасности движения имеет, в основном, косвенное значение. Чем больше масса автомобиля, тем труднее им управлять. Тяжелый автомобиль медленно разгоняется и останавливается. На нем трудно выполнить сложный маневр. Чем больше масса транспортного средства, тем больше динамические нагрузки на дорогу, тем меньше срок службы покрытия. Поэтому, несмотря на очевидные преимущества применения подвижного состава большой массы, во всех странах строго соблюдают ограничение осевых нагрузок и полных масс транспортных средств. В РФ все автомобили разделены на три группы:
группа А — автомобили и автопоезда дорожного типа для дорог с усовершенствованным капитальным покрытием, имеющие осевые нагрузки до 10 тонн от одиночной оси и полную массу автомобиля до 30 тонн, автопоезда до 38 тонн (т.е. могут эксплуатироваться по дорогам общего пользования 1, 2, 3 категорий, а при специальном усилении дорожной одежды по дорогам 4 категории);
группа В — автомобили и автопоезда дорожного типа, для всей сети дорог общего пользования и имеющие осевые нагрузки до 6 тонн от одиночной оси и полную массу одиночного автомобиля до 22 тонн, автопоезда до 34 тонн (могут эксплуатироваться по всем дорогам общего пользования);
внедорожные — это автомобили, не допускаемые к эксплуатации по дорогам общего пользования и имеющие нагрузку от одиночной оси >10 тонн.
1.1.2. Тяговая динамичность
Определение мощности двигателя
Требуемая эффективная мощность определяется:
10000 10000 v — скорость движения автомобиля Ga — вес автомобиля
Ga = 1340 • 9,81 = 13145,4 Н F — площадь лобового сопротивления автомобиля
F = В • H = 1,402 • 1,4 = 1,9628 м 2 B — колея подвижного состава Н — наибольшая высота подвижного состава
vmax — максимальная скорость подвижного состава равная 25 м/с кв — коэффициент сопротивления воздуха т]тр — КПД трансмиссии
Расчет и построение внешней скоростной характеристики двигателя Наиболее полно возможности двигателя отражает внешняя скоростная характеристика двигателя, которая представляет собой зависимость мощности, крутящего момента и удельного расхода топлива от угловой скорости вращения коленчатого вала.
Установлен дизельный двигатель
®mrn = 100 с-1 ®max = 500 с-1
Для карбюратора без ограничителя принимаем:
Ne max = 1,1 • Nev = 1,1 • 79,84 = 87,824 кВт
Построение тяговой характеристики:
Подбираем шину Кама EVRO 127, который имеет следующие показатели:
Размер — 175/70R13 Ширина профиля — 177 мм Наружный диаметр — 584 мм Статический радиус — 263 мм
Указанные размеры даны в миллиметрах, в соответствии с этим рассчитываем радиус качения колеса по следующей формуле:
rk = (D / 2 + х • В • Л) • 0,001мм где D — посадочный размер;
В — ширина профиля шины;
x — принимаем для грузовых автомобилей равным 1
Л — коэффициент деформаций шины под воздействием вертикальной нагрузки и крутящего момента. Принимаем для радиальных шин равным 0,92.
Определяем мощность на колесе по формуле:
р = М е • imp • Лтр / r k , кН где imp — передаточное число трансмиссии
i mp = i Kn • i 0 = 0,784 • 6,28 = 4,92
i0 — передаточное отношение главной передачи
где comax — максимальная угловая скорость вращения коленчатого вала;
КП^ — минимальное передаточное число коробки передач vmax — максимальная скорость, развиваемая на высшей передаче rk — радиус качения колеса
Динамическая характеристика автомобиля
Динамическим фактором по тяге называется отношение разности тяговой силы и силы сопротивления воздуха к весу подвижного состава:
где Pt — тяговая сила;
Pb — сила сопротивления воздуха;
G — вес автомобиля.
Динамической характеристикой подвижного состава называется зависимость динамического фактора по тяге от скорости на различных передачах.
Сила сопротивления воздуха:
Р ь = k • F • v2 (24)
где k — коэффициент сопротивления воздуха, Нс /м ;
F — площадь лобового сопротивления автомобиля, м 2 ; v — скорость движения автомобиля, км/ч.
Динамический фактор автомобиля соответствует дорожному сопротивлению, характеризуемому коэффициентом сопротивления дороги ¥, которое автомобиль способен преодолеть на данной передаче с заданной постоянной скоростью. В случае, если величина динамического фактора
автомобиля отличается от коэффициента сопротивления дороги, по которой
он движется, то это движение будет ускоренным (при D > ¥), либо
замедленным (при D j = — • (D — v м/с (25)
где g — ускорение свободного падения, м/с2;
° вр — коэффициент учета вращающихся масс автомобиля;
D — динамический фактор;
V — коэффициент сопротивления дороги.
О вр = 1 + а 1 • i + а 2 (26)
где а1 ,а2 — распределение нагрузки между передней и задней осью;
ik — передаточное отношение передачи.
Принимаем значения G по таблице 3.
Таблица 3- Зависимость G от типа автомобилей
Определение времени и пути разгона:
Время и путь разгона автомобиля до максимальной скорости являются самыми распространенными и наглядными характеристиками динамичности автомобиля. Их определение производят графоаналитическим способом с использованием графика ускорений автомобиля. При проведении расчетов полагаем, что разгон автомобиля на каждой передаче производится до достижения двигателем максимальных оборотов.
Кривые ускорений автомобиля, начиная с первой передачи, разбиваем на 6 интервалов скоростей (прилож. А). Для каждого интервала скоростей определяем среднее ускорение и изменение скорости в пределах интервала.
Предполагаем, что внутри интервала подвижной состав передвигается с постоянным средним ускорением, тогда время прохождения первого участка:
где t1 I — время прохождения первого участка, сек; v1 — скорость в конце участка, м/с; v! — скорость в начале участка, м/с; j1 — ускорение в начале участка, м/с 2 ;
jH — ускорение в конце участка, м/с 2 .
То же самое рассчитываем на остальных участках каждой передачи.
При переключении передачи происходит падение скорости, величина которой зависит от дорожных условии, скорости движения и параметров обтекаемости:
Av = 33 • tn • щ, м/с (28)
где ^ — время переключения передачи. Зависит от типа двигателя,
коробки передач и квалификации водителя.
Путь проходимый автомобилем за время переключения передачи:
AS l / = t П • V k (30)
Результаты вычислении заносим в таблицу 5.
Рисунок 6 — График пути
1.1.3. Тормозная динамичность
Оценочными показателями тормозной динамичности автомобиля служат среднее замедление за период полного торможения и путь автомобиля от начала воздействия водителя на орган управления до остановки, т. е. за время ^ + tn + ?уст, где tc — время запаздывания тормозной системы; tn — время нарастания замедления; tyCT — интервал времени, в котором замедление постоянно.
В курсовой работе необходимо рассчитать минимально возможный тормозной путь (на горизонтальной дороге с асфальто- или цементобетонным покрытием, с полностью исправной тормозной системой, при 90%-ной глубине рисунка протектора шин), если начальная скорость автомобиля v0 составляет 60 км/ч.
Время tp — время реакции водителя — обычно находится в пределах 0,32,5 с. Оно зависит от квалификации водителя, его возраста, степени утомления и других факторов.
Время tc (время запаздывания тормозной системы) необходимо для устранения зазоров в соединениях тормозного привода и перемещения всех его деталей. Это время, зависящее от конструкции и технического состояния тормозного привода, колеблется в среднем от 0,2-0,3 с (гидравлический привод) до 0,6-0,8 с (пневматический привод). У автопоездов с пневматическим приводом тормозных механизмов оно может достигать 2-3 с. В течение времени (tp+ tc) автомобиль продолжает двигаться равномерно с начальной скоростью v0. В конце этого периода возникают тормозные силы, вызывающие замедление движения.
Продолжительность периода tn находим из выражения:
где b и Иц — расстояния соответственно от центра тяжести автомобиля до заднего моста и до поверхности дороги, м;
G — вес автомобиля, Н;
фх — коэффициент сцепления; для сухого асфальто- и цементобетонного покрытия он составляет 0,7-0,8;
L — база автомобиля;
К1 — скорость нарастания тормозных сил; для тормозных систем с гидроприводом она равна 15-30 кН/с, с пневмоприводом 25-100 кН/с.
14028,3 * 0,75 * (1,430 + 0,723 * 0,75) л
В заключительном периоде торможения, когда колеса обоих мостов заблокированы, установившееся замедление
где g — ускорение свободного падения.
J уст = 9,81 * 0,75 = 7,357 м/с;
Если известны tc, tK и _уусх, то тормозной путь можно рассчитать
следующим образом. Предположим, что в течение времени tn автомобиль
движется равнозамедленно с замедлением, равным 0,5/уст. При полном использовании сцепления всеми колесами автомобиля замедление определяют по формуле (6), тогда полный тормозной путь
мощность тормозных механизмов недостаточна для доведения передних колес до юза, то справедливы выражения (7), (8), однако время гя следует определять по формуле:
^ н = R x1max / K 1 ’
где Rximax — максимальная касательная реакция на колесах переднего моста, находится из справочных данных для конкретной модели автотранспортного средства.
Установившееся замедление в этом случае определяется не по формуле (6), а выражением:
где а — расстояние соответственно от центра тяжести автомобиля до переднего моста.
1.1.4. Устойчивость
Оценочными показателями устойчивости, определяемыми в данной курсовой работе, являются: скорость убук, максимально допустимая при прямолинейном движении автомобиля без пробуксовки ведущих колес;
максимально возможная (критическая) скорость уопр, с которой можно вести автомобиль без угрозы опрокидывания; максимально допустимый (критический) угол ропр косогора, по которому автомобиль может двигаться
без опрокидывания; максимальный угол подъема абук, при котором возможно равномерное движение автомобиля без буксования ведущих колес.
Скорость убук [м/с], максимально допустимая при прямолинейном движении автомобиля по горизонтальной дороге без пробуксовки ведущих колес, определяется на каждой передаче (с учетом найденного ранее по формуле (4) максимального ускорения jmax):
Скорость Убук уменьшается при уменьшении коэффициента сцепления, росте сопротивления дороги, а также при увеличении ускорения. Поэтому потеря курсовой устойчивости автомобилем наиболее вероятна на участках дороги со скользким неровным покрытием (укатанный снег, обледенелый асфальтобетон, булыжник) и подъемами. Если при прохождении подъема «с ходу» встретится участок, покрытый снежной или ледяной коркой, то даже небольшая поперечная сила может вызвать боковое скольжение заднего моста.
Поперечную устойчивость при криволинейном движении характеризует максимально возможная (критическая) скорость Уопр, с которой можно вести автомобиль без угрозы опрокидывания по горизонтальному участку.
Рассмотрим схему движения автомобиля на повороте (рисунок 3). Примем для простоты, что автомобиль является плоской фигурой, а увод и скольжение колес отсутствуют. Мгновенный центр О скоростей (центр поворота) автомобиля располагается в точке пересечения перпендикуляров к векторам скоростей средних точек мостов. При отсутствии увода и скольжения колес вектор скорости середины заднего моста параллелен плоскостям задних колес, поэтому точка О находится на продолжении оси заднего моста.
Рисунок 3 — Схема поворота автомобиля.
Скорость Уопр определяем по формуле:
vonp =V BgR / ( 2h ,), (l 0 )
где 0 — угол поворота управляемых колес (в курсовой работе принимается менее 0,349 рад);
R — расстояние от точки О до середины заднего моста; при 0 6ук G( L — h^x) + G„p (L — 11Прф x)
где Gnp — вес прицепа, Н; Иир — высота сцепного устройства, м.
Чем меньше величина фх и чем больше масса прицепа по сравнению с массой тягача, тем меньше абук. Так, на дорогах с обледенелым покрытием буксование может наступить при абук = 2-3°, т. е. на относительно пологих подъемах.
Для одиночного автомобиля (типа 2х1) Gnp = 0:
t g а бук = 7″ ф ^ _ ’ (13)
бук 2,424 — 0,723*0,75
Для автомобиля со всеми ведущими мостами:
Такие автомобили могут преодолевать без потери продольной устойчивости весьма крутые подъемы даже при мокром и скользком покрытии.
1.1.5. Управляемость
Управляемостью называют способность автомобиля устойчиво сохранять заданное направление движения и вместе с тем быстро изменять его при воздействии водителя на рулевое управление.
Поворачиваемостью называют свойство автомобиля изменять направление движения без поворота управляемых колес. Есть две основных причины поворачиваемости: увод колес, вызываемый поперечной эластичностью шин, и поперечный крен кузова, связанный с эластичностью подвески. Соответственно различают шинную и креновую поворачиваемость автомобиля.
При наличии увода автомобиль может двигаться криволинейно, даже если угол поворота управляемых колес равен 0. Кривизна траектории зависит от соотношения 51 и 52 (углы увода переднего и заднего мостов).
Если 51 = 52, то шинную поворачиваемость автомобиля называют нейтральной. Хотя при этом траектория движения автомобиля о жесткими шинами не совпадает о траекторией движения автомобиля, имеющего нейтральную поворачиваемость, так как центры поворота в этих случаях занимают различные положения.
Если 51 > 52, то для движения автомобиля с эластичными шинами по кривой управляемые колеса нужно повернуть на больший угол, чем при жестких шинах. В этом случае шинную поворачиваемость автомобиля называют недостаточной. Автомобиль с недостаточной шинной поворачиваемостью устойчиво сохраняет прямолинейное направление движения.
Если угол 51 2 / (2Sa)
где v — скорость автомобиля непосредственно перед ударом, м/с;
sa — остаточная деформация автомобиля, которая при ударе о поверхность,
сравнимую по площади с лобовой площадью автомобиля, составляет:
легковые автомобили с несущим кузовом. 0,40-0,90 м
легковые автомобили с рамным основанием. 0,20-0,40 м
грузовые автомобили и автобусы. 0,15-0,30 м
Jp = 16,66 2 /(2*0,4) * 35 g Jp = 16,66 2 /(2*0,9) * 16 g
Автомобиль, врезается в бетонную стенку на скорости 60 км/ч (16,66
Перегрузка, действующая на пассажиров, составит 35 g, то есть незафиксированного ремнем человека, весящего 75 кг, ударит о приборную доску с силой в 2624 кг.
1.3. Послеаварийная безопасность
Послеаварийная безопасность — это свойство автомобиля уменьшать тяжесть последствий ДТП после остановки и предотвращать возникновение новых ДТП. К элементам послеаварийной безопасности автомобиля относятся конструктивные мероприятия и дополнительные приборы, предотвращающие возникновение опасных явлений, возникающих в результате ДТП.
Опасными явлениями, которые могут возникнуть в результате ДТП, следует, считать пожар, заклинивание дверей, заполнение водой салона автомобиля, если он затонул.
Требования к пожарной безопасности автомобиля и соответствующим элементам его конструкции регламентируются Правилами № 34-01 ЕЭК ООН. Этот документ регламентирует утечку топлива из топливного бака, заливной горловины и топливопроводов при фронтальном наезде автомобиля на препятствие со скоростью 13,9 м/с или наезде сзади со скоростью 10 м/с; утечка топлива в момент наезда не должна превышать 28 г/мин, а образование каплеобразной смеси также 28 г/мин. В ходе испытаний определяется объем жидкости, заменяющей топливо и вытекшей из бака при нарушении его герметичности, оценивается вероятность возникновения пожара и возможность его тушения имеющимися на автомобиле средствами.
Конструкции автомобилей массового производства должны отвечать следующим требованиям в отношении пожарной безопасности:
1) Предусматривается установка огнестойкой перегородки между топливным баком и пассажирским салоном. Элементы системы питания должны быть защищены от коррозии и предохранены от соприкосновения с
препятствиями на грунте. Все топливопроводы должны располагаться в защищенных местах (но не в салоне автомобиля); они не должны подвергаться каким-либо механическим воздействиям. Топливный бак следует изготовлять из огнестойкого материала; он не должен заряжаться статическим электричеством.
2) Заливная горловина не должна располагаться в салоне, багажнике или моторном отсеке и выступать над поверхностью кузова; крышка горловины должна быть огнестойкой.
3) Электропроводку следует размещать в специальных каналах или крепить к корпусу; она должна быть защищена от коррозии.
4) Для предотвращения быстрого распространения пламени и образования в салоне ядовитых газов (продуктов сгорания) регламентируются свойства материалов для внутренней отделки салона.
Кроме того, для повышения пожарной безопасности автомобилей на них устанавливают автоматически включающиеся огнетушители (как правило, пенные); штатные пенные или порошковые огнетушители; устройства, автоматически размыкающие электроцепь автомобиля при возникновении перегрузок определенной величины; устройства для автоматического впрыскивания в топливный бак веществ, превращающих бензин в трудносгораемое вещество (композиции галогенов, кремниевые соединения, специальные смолы).
В отношении заклинивания дверей автомобилей можно применять Правила № 11-02 ЕЭК ООН «Прочность замков и петель боковых дверей”. Однако следует учитывать, что если применяются дополнительные устройства, повышающие надежность замка в исправном состоянии (блокираторы дверей), то открыть дверь в деформированном виде, скорее всего, будет труднее. В ходе испытаний автомобиля на удар проверяется, чтобы двери (по одной с каждой стороны) открывались без применения инструмента.
Облегчение эвакуации людей из салона автомобиля, особенно автобуса, может быть достигнуто следующими мероприятиями:
— устройством запасных выходных люков в крыше автобуса (автомобиля);
— устройством запасных выходных люков в боковых стенках автобуса;
— снабжением дверей и люков дополнительными наружными замками и
— оборудованием салона молотками для разбивания стекол, пилами,
молотами, ножницами и другими инструментами для прорезывания
отверстий в стенках автобуса.
Предотвращение попадания воды в салон автомобиля при его затоплении пока не регламентируется международными стандартами. В какой-то мере может быть применен Российский ОСТ 37.001.248 на пылеводонепроницаемость. Единственный путь борьбы с этим явлением -повышение общей герметичности салона автомобиля. В этом направлении имеется много нерешенных вопросов. Следует отметить, что возможность спасения людей из затопленного автомобиля зависит не столько от его
конструкции (водонепроницаемости), сколько от состояния окон автомобиля (открыты или закрыты), умения людей плавать, от присутствия духа у водителя и пассажиров.
1.4. Экологическая безопасность
Экологическая безопасность — это свойство автомобиля, позволяющее уменьшать вред, наносимый участникам движения и окружающей среде в процессе его нормальной эксплуатации. Мероприятиями по уменьшению вредного воздействия автомобилей на окружающую среду следует считать снижение токсичности отработавших газов и уровня шума.
Основными загрязняющими веществами при эксплуатации автотранспорта являются:
— нефтепродукты при их испарении;
— продукты истирания шин, тормозных колодок и дисков сцепления, асфальтовых и бетонных покрытий.
Наибольший загрязняющий эффект из всего перечисленного оказывают отработавшие газы. К основным вредным компонентам отработавших газов автомобилей относятся окись углерода СО (сильное токсичное вещество), углеводороды СНх, окислы азота NOx (токсичны, вместе с углеводородами СН образует фотохимический смог), альдегиды (вредно действуют на нервную систему и органы дыхания), твердые частицы (сажа), окислы серы БОх, бензапирен, соли свинца (сильно действующие токсичные вещества).
В настоящий момент в России действуют допустимые нормы по токсичности выхлопных газов Евро II (согласно Правилам №49, 83 ЕЭК ООН), введенные с 1 января 2001 г.
В Европе этот стандарт действует с 1996 г., а нормы Евро III вступают в силу с 1 октября 2001 года. Причем все они будут обязательны для российских
транспортных средств, работающих за границей. Кроме того, если российский автомобиль выпущен после октября 2001 года, то он должен удовлетворять нормам Евро III.
В Евро II регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составляет (в г/кВт*ч): СО (окись углерода) — 4,0; СН (углеводороды) — 1,1; КОх (оксиды азота) — 7,0; РМ (твердые частицы) — 0,15.
В Евро III требования к токсичности выхлопа ужесточаются -регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составит (в г/кВт*ч): СО (окись углерода) — 2,0; СН (углеводороды) — 0,6; КОх (оксиды азота) — 5,0; РМ (твердые частицы) — 0,1. Для бензиновых двигателей легковых автомобилей уровень выбросов в г/км: CO — 2,3; CH — 0,2; NOx — 0,15.
При движении автомобиля шум создается двигателем внутреннего сгорания, шасси автомобиля (в основном механизмами трансмиссии и кузовом) и в результате взаимодействия шин с дорожным покрытием.
У технически исправного легкового автомобиля, имеющего небольшой пробег, основной источник шума — взаимодействие шин с дорожным покрытием, у грузового автомобиля шум шин составляет меньшую долю. В результате взаимодействия колеса с дорожным покрытием возникает шум, уровень и характеристики которого зависят от типа автомобиля, конструкции подвески, рисунка протектора, нагрузки на шину, ее жесткости и давления в ней.
Шум от работы двигателя внутреннего сгорания возникает во впускном тракте карбюратора и трубопроводе; в газораспределительном клапанном механизме в результате взаимодействия толкателей с клапанами; в зубчатых, а также в цепных и ременных передачах между коленчатым и распределительным валами; в системе охлаждения двигателя вследствие работы вентилятора, ременной передачи и водяного насоса; в выпускной системе. Шум возникает также в зубчатых зацеплениях коробки передач и ряде других второстепенных (по шуму) механизмов.
В элементах шасси технически исправного (нового) автомобиля и его кузове шум создается при работе механизмов трансмиссии элементах подвески и в результате обтекания кузова воздушным потоком при движении.
Шум, создаваемый отдельным автомобилем (автопоездом), регламентируется рядом нормативных документов, основными из которых являются Правила № 9 ЕЭК ООН. Шум выпускаемых отечественной автомобильной промышленностью транспортных средств в основном соответствует этим нормам.
2. Подушка безопасности автомобиля ВАЗ
Подушка, безопасности — система пассивной безопасности (SRS, Supplementary Restraint System) в транспортных средствах.
Представляет собой эластичную оболочку, которая наполняется воздухом либо другим газом. Подушки безопасности широко используются для смягчения удара в случае автомобильного столкновения.
Пневмоподушка дополняет ремень безопасности, уменьшая шанс удара головы и верхней части тела пассажира о какую-либо часть салона автомобиля. Также они снижают опасность получения тяжелых травм, распределяя силу удара по телу пассажира.
«Недавно проведенное исследование показало, что более чем 6.000 жизней было спасено благодаря подушкам безопасности».
Стандартные плечевые ремни безопасности были фактически убраны в автомобилях выпуска 70-х, оснащенных подушками безопасности, которые были призваны заменить ремни при лобовых столкновениях. Подушка. безопасности на стороне пассажира была расположена в нижней части панели, что позволяло ей также защищать колени пассажира. Нижняя часть панели на водительском месте также отличалась своей выпуклостью.
Дженерал Моторз назвала свою систему ACRS (Air Cushion Restraint System). Она включает в себя боковую подушку безопасности для пассажира в автомобилях выпуска 70-х и предусматривает двухступенчатое развертывание как и более поздние системы.
Принцип действия основывается на использовании простого акселерометра, инициирующего химическую реакцию в специальном баллончике. В результате реакции происходит быстрое наполнение газом нейлоновой подушки, которая уменьшает перегрузку, испытываемую пассажиром в момент резкой остановки при столкновении. Подушка также имеет небольшие вентиляционные отверстия, которые используются для относительно медленного стравливания газа после удара пассажира об неё.
Фронтальные подушки безопасности не должны развертываться при боковом ударе, ударе в заднюю часть либо перевороте автомобиля. Из-за того, что подушки безопасности срабатывают лишь раз и затем быстро сдуваются, они бесполезны при последующем столкновении. Ремни безопасности помогают снизить риск получения тяжелых травм во многих случаях. Они способствуют правильному расположению пассажира в кресле для максимизации эффективности подушки безопасности, а также защищают пристегнутых пассажиров при первом и последующих столкновениях. Таким образом, жизненно необходимо пристегиваться, даже в машинах, оборудованных подушками безопасности.
Хотя в 60-х и 70-х годах они рекламировались как потенциальная замена ремней, в нынешнее время подушки безопасности продаются как дополнительное средство защиты. Максимально эффективно они работают вместе с ремнями безопасности. Автопроизводители пересмотрели свою точку зрения насчет замены подушками безопасности столь необходимых ремней.
Общая схема работы
Система подушек безопасности включает в себя три главных компонента:
-непосредственно сам модуль подушки безопасности
-датчики определения удара
Некоторые системы могут также иметь переключатель on/off (вкл/выкл) для отключения в случае надобности.
Модуль подушки безопасности содержит в себе блок наполнения и легкую нейлоновую подушку. Модуль водительской подушки безопасности
находится в центре рулевого колеса, а пассажира — в приборной панели. Полностью наполненная газом водительская подушка имеет примерно диаметр большого надувного пляжного мячаШаблон:НЕТ АИ. Пассажирская же может быть в два-три раза больше, так как дистанция между сидящим справа пассажиром и приборной панелью гораздо больше нежели расстояние между водителем и рулем.
Датчики удара расположены в передней части автомобиля и/или салоне. Автомобили могут быть оснащены одним и более датчиками, которые активируются под воздействием сил, возникающих при лобовом или близком к лобовому ударе. Датчики измеряют степень замедления, с которой машина сбрасывает скорость. Именно поэтому замедление автомобиля, при котором датчики активируют подушки, варьируется в зависимости от характера столкновения. Подушки безопасности не должны срабатывать при внезапном торможении или при езде по неровным поверхностям. На самом деле, максимальный уровень замедления при экстренном торможении составляет лишь незначительную часть от уровня, достаточного для приведения подушек безопасности в действие.
Блок диагностики следит за исправностью системы подушек безопасности. Он активируется при включении зажигания автомобиля. Если блок диагностики обнаружит неисправность, загорится лампочка, предупреждающая водителя о необходимости доставки автомобиля в авторизованный центр обслуживания для диагностики системы подушек безопасности. Большинство блоков диагностики имеют устройства, которые содержат достаточно электрической энергии для приведения подушек безопасности в действие, если основная аккумуляторная батарея будет быстро выведена из строя при столкновении.
Некоторые автомобили без задних сидений, такие как пикапы и кабриолеты, либо задние сидения которых слишком малы для установки детских сидений, имеют ручной переключатель on/off (вкл/выкл) для пассажира справа, установленный на заводе. Такие переключатели для водительской и пассажирской подушки безопасности могут быть установлены квалифицированным обслуживающим персоналом по запросу владельца транспортного средства, если он отвечает определенным государственным критериям и имеет разрешение.
Сперва большинство автомобилей комплектовалось лишь одной водительской подушкой безопасности (DAB), установленной в рулевом колесе и защищающей водителя (который имеет больше шансов получить травмы). На протяжении 90-х годов подушки для передних пассажиров (PAB), а затем раздельные боковые подушки (SAB), помещаемые между пассажирами и дверью, стали обычной практикой.
Подушка может серьезно ранить или даже убить непристегнутого ребенка, который сидит слишком близко к ней или же был выброшен вперед силой экстренного торможения. По мнению специалистов для безопасности ребенка необходимы следующие условия:
Дети должны перевозиться в правильно установленном и соответствующем возрасту автомобильном кресле на заднем сиденье. Внимательно изучите соответствующий раздел в инструкции к автомобилю.
Младенцы, перевозимые в кресле с задним расположением, (в возрасте до одного года и весом менее 10 кг) не должны находиться на переднем пассажирском сиденье при включенной подушке безопасности.
Если ребенок старше одного года вынужден ехать на переднем сиденье, оборудованном подушкой безопасности со стороны пассажира, то он или она должны сидеть в детском кресле ориентированном по направлению движения, или пристегнуты с использованием коленного или плечевого ремня, а сиденье должно быть отодвинуто назад насколько возможно.
Подушки безопасности для пешеходов
Разрабатываются опытные образцы подушек безопасности, расположенных снаружи автомобиля, перед ветровым стеклом.
Такие подушки раскрываются от сигнала сенсора переднего бампера и предотвращают удар головы пешехода о лобовое стекло (около 80 % смертей при столкновении).
Подушки безопасности для велосипедистов. Дизайнеры Анна Хаупт (Anna Haupt) и Тереза Алстин (Terese Alstin) из Швеции разработали прототип подушки безопасности для мотоциклистов и велосипедистов под названием Hovding, которая надувается в случае падения и предохраняет голову и шею от серьезных травм. Подушка. находится внутри водонепроницаемого тканевого чехла и в сложенном состоянии крепится вокруг шеи пилота. В момент падения подушка расскрывается за 0.1 секунду, обеспечивая защиту не хуже, чем обычный мотоциклетный шлем.
Заключение
Развитие современных видов транспорта позволяет обществу добиваться существенной экономии труда и времени, сокращать продолжительность процессов производства и обращения товаров, высвобождать время для общественно-полезной деятельности, образования и отдыха. Надземный, наземный, подземный и водный — это те виды транспорта, которые сейчас осуществляют перевозку грузов и пассажиров. Наиболее экономичным и перспективным является автомобильный транспорт, бурное развитие которого обусловлено большой подвижностью, высокой скоростью перевозки грузов, доставки грузов к адресату без промежуточных перегрузок и др.
Высокое качество современных автомобилей и автомобильных дорог, а также хорошая организация движения во многом облегчают труд водителя, уменьшают потенциальную возможность возникновения дорожнотранспортных происшествий (ДТП). Однако аварийность на автомобильных дорогах продолжает оставаться очень высокой и является подлинным бедствий во многих странах с развитым автомобильным движением. По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в результате ДТП в мире погибают 1,3 млн. человек, 20-50 млн. получают травмы.
В России в практически каждый год от ДТП погибает свыше 35 тыс. человек, а увечья получают более 200 тыс. человек, причем 14 тыс. из них остались инвалидами навсегда.
Весь мир занят сейчас поисками мер борьбы с ДТП. Статистические данные последних десятилетий показывают, что в развитых странах смертность от ДТП ежегодно снижается, например в США за период с 1974 по 1998 год она уменьшилась на 27 %, а в странах с низким и среднем уровнем доходов, наоборот увеличивается. При правительствах многих стран созданы общегосударственные органы безопасности движения, проводится большая исследовательская работа по совершенствованию конструкции автомобилей, улучшению качества дорог и организации движения, профессиональному отбору водителей и их подготовке.
Список использованных источников доступен в полной версии работы
Чертеж к курсовому проекту:
Скачать курсовую: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ
Источник Источник http://knowledge.allbest.ru/transport/2c0b65635b2ad78a5c43a89521206c36_0.html
Источник Источник Источник Источник http://privetstudent.com/kursovyye/kursovye-transport/1515-kursovaya-bezopasnost-transportnyh-sredstv.html