Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Авто-потроха: что у машинок внутри?

Устройство и принцип действия автомобильных технологий, узлов и агрегатов

Технология роторно-поршневых двигателей

Роторно-поршневой двигатель (РПД, двигатель Ванкеля) — роторный двигатель внутреннего сгорания, создан в 1957 году инженером компании NSU Вальтером Фройде в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией такого же двигателя. В данной конструкции функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы.

Интересно, что сам Ванкель никогда не имел водительских прав, у него была очень сильная близорукость.

Первый РПД (NSU Spider, выпуск с 1964 по 1967 год) выдавал 57лс и разгонял машину до 150км/ч. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-80е годы ХХ века, интерес к РПД снизился из-за его принципиальных неустранимых недостатков. В настоящее время РПД применяется в автомобилях компании Mazda (RX-8, выпуск завершен в 2008 году) и в моделизме.

Принцип действия

Принцип работы РПД основан на давлении расширения газов, которое создаётся при сжигании топлива. Главное отличие и положительный момент РПД — отсутствие масс с возвратно-поступательными движениями. Все движение деталей происходит по кругу без резких остановок. В обычном поршневом ДВС происходит полная остановка поршня и шатуна в верхней и нижней мертвых точках, что создает значительные силы инерции и требует применения высокопрочных материалов.

Основной частью конструкции является ротор, превращающий давление в круговое движение. Ротор в простейшем случае имеет форму треугольника с выпуклыми гранями (т.н. треугольник Рёло) и находится/вращается в овальном корпусе специального профиля, поверхность которого выполнена по эпитрохоиде (возможны варианты с другой формой ротора и корпуса). В полостях между ротором и корпусом, полностью изолированных друг от друга и меняющих свой объем по ходу вращения ротора, происходит ряд процессов (тактов) — подача воздуха, впрыск топлива, сжатие смеси, создание искры, вывод отработанных газов:

  • в первую полость через впускное окно поступает и перемешивается воздушно-топливная смесь (открытие и закрытие окна выполняется гранью ротора, аналогично двухтактному поршневому двигателю);
  • ротор перемещает полученную субстанцию во вторую полость, где проходит сжатие и воспламенение;
  • в третьей полости происходит расширение смеси и удаление отработанных газов через выпускное окно (также открывается и закрывается гранью ротора).

Ключевой момент заключается в том, что эти процессы происходят не последовательно, а одновременно и параллельно, т.е. за один оборот ротора происходят все три такта.

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Вращение ротора происходит на эксцентрике — паре шестерен, большая из которых находится на внутренней поверхности ротора, а меньшая, опорная, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.

Для обеспечения балансировки (особенно на холостых оборотах) нужно минимум два ротора, хотя применяются и однороторная конструкция. Двигатели Mazda имеют до трёх роторов (секций).

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Общий КПД роторного двигателя Ванкеля (термический и механический КПД) составляет около 40-45%. Для сравнения, обычные поршневые ДВС имеют 25% КПД (по другим данным — 34%), а современные турбодизеля до 40% (по другим данным — 50%).

Классификация роторных ДВС

Классификация роторных двигателей происходит по типу работы камеры сгорания — запирается она на время герметично, или имеет постоянную связь с атмосферой. К последнему типу относятся газовые турбины, камеры сгорания которых отделены от выхлопного сопла (от атмосферы) лишь густым «частоколом» лопастей роторной крыльчатки.

Роторные ДВС с герметично запираемыми камерами сгорания делятся на 7 различных конструкционных компоновок:

  1. Роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главного рабочего элемента. Ротор здесь не вращается, а как бы качается вокруг своей оси. Процесс сжатия происходит между лопатками мотора.
  2. Роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента. Внутри корпуса два ротора. Сжатие проходит между лопастями этих двух элементов, когда они сближаются и удаляются.
  3. Роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками-лопастями, движущимися в роторе. Данная конструкция до сих пор широко задействуется в пневматических моторах. Для роторных двигателей внутреннего сгорания существенно переделывается камера, в которой проходит воспламенение.
  4. Частный случай — с заслонками-лопастями, отклоняющимися на шарнирах на роторе.
  5. Роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками, движущимися в корпусе.
  6. Роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов.
  7. Роторные двигатели с простым вращательным движением главного рабочего элемента, без применения отдельных уплотнительных элементов и спиральной организацией формы рабочих камер. Считаются наиболее технически совершенными за счет отсутствия деталей, совершающих возвратно-поступательные движения. Именно они являются РПД («двигателем Ванкеля») в классическом современном понимании. РПД такого типа легко достигают 10000 об/мин.
  8. Роторные двигатели с планетарным вращательным движением главного рабочего элемента и без применения отдельных уплотнительных элементов. Самая первая модификация, изобретённая Фройде и Ванкелем.

Достоинства РПД

  • Конструкция РПД сравнительно мала (в 1,5-2 раза меньше классического ДВС такой же мощности) и имеет малый вес, что улучшает управляемость машины, облегчает оптимальное расположение трансмиссии (развесовка) и высвобождает больше внутреннего компоновочного пространства.
  • За счёт отсутствия преобразования возвратно-поступательного движения во вращательное и связанных с этим сил инерции, РПД выдерживает гораздо большие обороты по сравнению с традиционными двигателями. Как следствие — отличные динамические качества (высокая удельная мощность — двигатель рабочим объемом 1,3 литра выдает 220лс, а с турбонаддувом — 350лс!), высокие предельные обороты (до 10000 об/мин), отличная приёмистость и ровная кривая крутящего момента.
  • Выдача мощности с каждой секции в течение 3/4 оборота выходного вала (однопоршневой ДВС выдает мощность только на 1/4 оборота).
  • Минимум вибраций, прекрасная балансировка (особенно в двухроторных двигателях).
  • На 35-40% меньше деталей в конструкции вообще и движущихся масс в частности (отсутствуют поршни, шатуны, коленчатый вал, в «классическом варианте» — газораспределительный механизм), гораздо меньшая масса движущихся частей.
  • В простейшем варианте РПД отсутствует отдельная система смазки — масло добавляется в топливо, как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) в таком варианте производится самой топливо-воздушной смесью.

Недостатки РПД

  • Невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
  • Сложная система уплотнений ротора требует сложной и эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400-1200 мл на 1000 км, замена каждые 5000 км). Владельцы автомобилей с РПД рекомендуют проверять уровень масла каждое утро. При этом масло сгорает вместе с топливом, что резко ухудшает экологию РПД.
  • Особые требования к качеству масла — в силу склонности к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя) и перегрева (из-за повышенного трения и небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла (абразивные частицы в старом масле резко увеличивают износ) и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель чаще всего заклинивает при перегреве, то РПД — во время запуска холодного двигателя или работе в холодную погоду, когда охлаждение избыточно.
  • Высокий расход топлива на низких оборотах (и вообще). Теоретически может устраняться отключением части секций на низких оборотах, что заодно снижает температурную нагрузку.
  • Высокие требования к геометрической точности изготовления деталей и как следствие высокая сложность производства. Требуется применение высокотехнологичного и высокоточного оборудования: станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.
  • Соединение ротора с выходным валом через эксцентриковый механизм (характерная особенность РПД Ванкеля) вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя.
  • Высокие перепады давления между камерами ротора при очень небольшой площади пятна контакта. Как следствие — быстрый износ уплотнителей и очень высокие требования к ним, в целом — малый ресурс двигателя (ключевая проблема РПД — высокие утечки между камерами, падение КПД и рост токсичности выхлопа). Так, для Mazda RX-8 ресурс двигателя составляет около 100-150 тысяч км пробега при правильном и своевременном ТО, после чего идет капитальный ремонт с заменой уплотнителей. Частично проблема быстрого износа уплотнителей на высокой скорости вращения вала была решена применением высоколегированной стали.
  • Меньшая эластичность относительно классических поршневых ДВС — РПД выдает оптимальную мощность только на высоких оборотах, что требует усложнения трансмиссии.
  • Плохая геометрия камеры сгорания, которая в РПД имеет линзовидную форму, т.е. относительно большую площадь при маленьком объёме. При горении рабочей смеси основные потери энергии идут через излучение, поэтому идеальная форма камеры сгорания — сферическая. Тепловые потери не только снижают эффективность преобразования химической энергии в механическую, но и ведут к сильному перегреву двигателя (т.е. более высокому тепловому режиму), а также плохому сгоранию топливно-воздушной смеси и склонности к детонации. Частично эта проблема решается установкой двух свечей в разных зонах на одну камеру сгорания.
  • Малый ресурс свечей зажигания, их перегрев, необходимость замены каждые 10000 км.

Устройство РПД

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого, а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот эксцентрикового вала двигатель выполняет один рабочий цикл, что эквивалентно работе двухцилиндрового поршневого двигателя. За один оборот ротора эксцентриковый вал выполняет 3 оборота и 9 рабочих ходов, что приводит к ошибочным сравнениям роторного двигателя с шестицилиндровым поршневым двигателем.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Применение

Первым серийным автомобилем с роторным двигателем стал NSU Spider, который был выпущен в 1964 году. NSU — немецкая компания, основанная в 1873 году, которая выпускала автомобили и мотоциклы. До 1969 года просуществовала как отдельная компания, далее была куплена концерном Volkswagen Group.

Первой массовой (37204 экземпляра) стала модель NSU Ro-80, настоящий прорыв благодаря правильному маркетингу. Однако ставка на «революционную технологию» РПД, еще не отлаженную в реальных условиях, стала серьезной ошибкой. Ресурс двигателя составил не более 50 тыс. километров, а зачастую и сильно меньше. РПД часто заменяли на поршневой L4 «Essex» фирмы Ford.

Также РПД устанавливались на автомобили:

  • Citroen GS Birotor (проект Citroën M35)
  • Mercedes-Benz С111
  • Chevrolet Corvette
  • ВАЗ 21018 (1976 год), 21079 и 2110 (модификации для спецслужб)
  • Mazda (с 1978 года, Cosmo Sport и серия Rotor-eXperiment, широко известная как RX)

Серия RX завершена в 2008 году на модели RX-8. Всего в серии выпущено более миллиона машин с РПД. Всего на пике популярности патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.

Интересно, что автомобили Mazda с буквами RE в наименовании (первые буквы от названия «Renesis») могут использовать в качестве топлива как бензин, так и водород (так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня).

Также РПД применяются на мотоциклах (мелкими сериями) и в авиационном моделизме.

Интересно, что получив патент на РПД в 1936 году, Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

Автомобили с роторным двигателем – в чем их преимущество?

Обычно «сердце» машины представляет собой цилидро-поршневую систему, то есть основано на возвратно-поступательном движении, однако есть и другой вариант – автомобили с роторным двигателем.

Автомобили с роторным двигателем – главное отличие

Основная сложность в работе ДВС с классическими цилиндрами – преобразование возвратно-поступательного движения поршней в крутящий момент, без которого колеса не будут вращаться. Именно поэтому с того момента, как был создан первый двигатель внутреннего сгорания, ученые и механики-самоучки ломали головы над тем, как сделать мотор с исключительно вращающимися узлами. Удалось это германскому технику-самородку Ванкелю.

Первые эскизы были им разработаны в 1927 году, по окончании высшей школы. В дальнейшем механик купил небольшую мастерскую и вплотную занялся своей идеей. Итогом многолетней работы стала рабочая модель роторного ДВС, созданная совместно с инженером Вальтером Фройде. Механизм оказался похожим на электромотор, то есть основой его стал вал с трехгранным ротором, очень похожим на треугольник Рело, который был заключен в камеру овальной формы. Углы упираются в стенки, создавая с ними герметичный подвижный контакт.

Полость статора (корпуса) делится сердечником на соответствующее числу его сторон количество камер, причем за один оборот ротора отрабатываются три основных такта: впрыск топлива, воспламенение, выброс отработанных газов. На деле их, конечно, 5, но два промежуточных, сжатие топлива и расширение газов, можно не принимать во внимание. За один полный цикл происходит 3 оборота вала, а если учесть, что обычно устанавливаются два ротора в противофазе, автомобили с роторным двигателем имеют мощность в 3 раза больше, чем классические цилиндро-поршневые системы.

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?
Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Насколько популярен роторный дизельный двигатель?

Первыми машинами, на которых был установлен ДВС Ванкеля, стали легковушки NSU Spider 1964 года выпуска, мощностью в 54 л.с., что позволяло разгонять транспортные средства до 150 км/ч. Далее, в 1967 году, был создан стендовый вариант седана NSU Ro-80, красивый и даже элегантный, с суженым капотом и несколько более высоким багажником. В серийное производство он так и не вышел. Впрочем, именно этот автомобиль подтолкнул многие компании покупать лицензии на роторный дизельный двигатель. В их число вошли Toyota, Citroen, GM, Mazda. Нигде новинка не прижилась. Почему? Тому причиной были серьезные ее недостатки.

Образуемая стенками статора и ротора камера значительно превышает объем классического цилиндра, топливно-воздушная смесь получается неравномерной. Из-за чего даже с применением синхронного разряда двух свечей не обеспечивается полное сгорание топлива. Как следствие – ДВС неэкономичен и неэкологичен. Именно поэтому, когда разразился топливный кризис, NSU, сделавшая ставку на роторные двигатели, была вынуждена слиться с Volkswagen, где от дискредитировавших себя «ванкелей» отказались.

Компанией Mercedes-Benz было выпущено лишь два автомобиля с ротором – С111 первого (280 л.с., 257.5 км/ч, 100 км/ч за 5 сек) и второго (350 л.с., 300 км/ч, 100 км/ч за 4.8 сек) поколения. Компанией Chevrolet также были выпущены две пробные машины Corvette, с двухсекционным двигателем на 266 л.с. и с четырехсекционным на 390 л.с., но все ограничилось их демонстрацией. За 2 года, начиная с 1974, компанией Citroen были выпущены с конвейера 874 автомобиля Citroen GS Birotor мощностью в 107 л.с., затем их отозвали для ликвидации, однако около 200 так и остались у автолюбителей. А значит, есть вероятность встретить их сегодня на дорогах Германии, Дании или Швейцарии, если, конечно, их владельцам дался капитальный ремонт роторного двигателя.

Наиболее стабильное производство смогла наладить компания Mazda, с 1967 по 1972 годы было выпущено 1519 автомобилей марки Cosmo, воплощенные в двух сериях по 343 и 1176 машин. За тот же период было выпущено в массовое производство купе Luce R130. «Ванкели» начали ставить на все без исключения модели Mazda с 1970 года, в том числе и на автобус Parkway Rotary 26, развивающий скорость до 120 км/ч при массе 2835 кг. Приблизительно в то же время началось производство роторных двигателей в СССР, правда, без лицензии, а, следовательно, до всего доходили своим умом на примере разобранного «ванкеля» с NSU Ro-80.

Разработка осуществлялась на заводе ВАЗ. В 1976 году был качественно изменен двигатель Ваз-311, а через шесть лет массово стала выпускаться марка Ваз-21018 с ротором мощностью 70 л.с. Правда, на всей серии вскоре был установлен поршневой ДВС, поскольку все «ванкели» сломались при обкатке, и потребовалась замена роторного двигателя. С 1983 года с конвейера стали съезжать модели Ваз-411 и Ваз-413 на 120 и 140 л.с. соответственно. Ими были оснащены отряды ГАИ, МВД и КГБ. В настоящее время роторами занимается исключительно компания Mazda.

Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри? Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?
Технология роторно-поршневых двигателей; Авто-потроха: что у машинок внутри?

Возможен ли ремонт роторного двигателя своими руками?

Самостоятельно что-либо сделать с ДВС Ванкеля довольно сложно. Наиболее доступное действие – замена свечей. На первых моделях они были вмонтированы непосредственно в неподвижный вал, вокруг которого вращался не только ротор, но и сам корпус. В дальнейшем, наоборот, статор сделали неподвижным, установив в его стенке 2 свечи напротив клапанов впрыска топлива и выпуска отработанных газов. Любые другие ремонтные работы, если вы привыкли к классическим поршневым ДВС, практически невозможны.

В двигателе Ванкеля деталей на 40 % меньше, чем в стандартном ДВС, работа которого основана на ЦПГ (цилиндро-поршневой группе).

Опорные вкладыши вала меняются в том случае, если начала проглядывать медь, для этого снимаем шестерни, осуществляем замену и снова напрессовываем зубчатые колеса. Затем осматриваем сальники и, если необходимо, меняем их тоже. Осуществляя ремонт роторного двигателя своими руками, будьте внимательны при снятии и установке пружин маслосъемных колец, передние и задние различаются по форме. Торцевые пластины тоже при необходимости подвергаются замене, причем устанавливать их нужно согласно буквенной маркировке.

Угловые уплотнения в первую очередь монтируются с передней стороны ротора, желательно их сажать на зеленую кастроловскую смазку, чтобы зафиксировать на время сборки механизма. После установки вала ставятся тыльные угловые уплотнения. Накладывая на статор прокладки, смажьте их герметиком. Апексы с пружинами в угловые уплотнители вставляются уже после того, как ротор помещен в корпус статора. В последнюю очередь смазываются герметиком прокладки передней и задней секций перед крепежом крышек.

Источник Источник Источник Источник http://carguts.ru/articles/wankel/
Источник Источник Источник Источник http://carnovato.ru/remont-rotornogo-dvigatelja-avtomobilja-svoimi-rukami/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Смазочные материалы: Виды, особенности и их значение в технике

Смазочные материалы: Виды, особенности и их значение в технике

Смазочные материалы являются неотъемлемой частью множества промышленных и бытовых процессов, обеспечивая бесперебойную работу механизмов и продлевая срок их службы. На странице https://www.cstore.ru/catalog/brand/hyundai-xteer вы можете узнать более подробную информацию. В этой статье мы рассмотрим основные виды смазочных материалов, их особенности и значение для сохранения работоспособности различного оборудования и техники. Что такое смазочные материалы и зачем они […]

Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

Покупка квартиры от застройщика в Пензе становится всё более популярным выбором среди жителей города. Основные преимущества квартиры от застройщика и такого выбора заключаются в следующем: Новая недвижимость: Приобретая квартиру от застройщика, вы получаете абсолютно новое жилье, где никто до вас не жил. Это значит, что все коммуникации, электропроводка и сантехника будут в идеальном состоянии, а […]