Устройство электромобиля

Устройство двигателя электромобиля

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Устройство электромобиля

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Устройство электромобиля

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

Устройство электромобиля

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Устройство электромобиля

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Устройство электромобиля

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей

Выделим достоинства электрических агрегатов:

  • высокий коэффициент полезного действия – до 95 процентов;
  • компактность, малый вес;
  • простота использования;
  • экологичность;
  • долговечность;
  • создается максимальный показатель крутящего момента на любой отметке скорости;
  • воздушное охлаждение;
  • способны функционировать в режиме генератора;
  • не нужна коробка передач;
  • возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

Устройство электромобиля

Электродвигатель Yasa Motors

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

  • непосредственно электродвигатель;
  • питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
  • упрощенная трансмиссия;
  • инвертор;
  • зарядное устройство на борту;
  • электронная система управления элементами конструкции;
  • преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

Устройство электромобиля

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

Устройство электромобиля

Электродвигатель с редуктором (вид снизу)

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

  • аудиосистемы;
  • климат-контроля;
  • освещения;
  • отопительной системы;
  • прочих элементов.

Система управления организовывает такие процессы:

  • мониторинг используемой энергии;
  • управление рекуперацией энергии торможения;
  • оценка уровня заряда;
  • управление динамикой движения;
  • обеспечение необходимого режима перемещения транспортного средства;
  • регулировка тяги;
  • управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

Устройство электромобиля

панель приборов Tesla

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

  • стилем вождения;
  • условиями и скоростью передвижения;
  • емкостью используемых аккумуляторов;
  • уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

  • замена батареи на заряженную (услугу могут предоставлять на специальных станциях);
  • ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;
  • нормальный режим – продолжительность зарядки может составить 8 часов.

Устройство и особенности гибридных систем

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

  • Интегрированное содействие мотору.
  • Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  • Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Различают также три вида «гибридов»:

  • Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  • Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  • Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

Устройство электромобиля

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Перспективы применения электродвигателей в автомобилях

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

Устройство электромобиля

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс — психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Устройство электромобиля

Электромобиль Tesla Model S

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.

Что такое трансмиссия автомобиля: объяснение простыми словами

Все узлы и детали автомобиля, задействованные в направлении потока мощности от двигателя к колёсам, относятся к комплексу средств, называемых трансмиссией или силовой передачей. Иногда её элементы параллельно выполняют другие функции, например, роль несущих конструкций, вспомогательной тормозной системы или источников сигнала для электронного оборудования, но по основному назначению продолжают относиться к трансмиссионной группе. Попытаемся рассказать, что такое трансмиссия автомобиля простыми словами. Насколько это вообще возможно, современный автомобиль достаточно сложен.

Назначение трансмиссии

Источником крутящего момента является, как правило, маховик двигателя внутреннего сгорания (ДВС). Именно с него снимается вся необходимая для движения машины полезная мощность. Но для передачи её к ведущим колёсам потребуется создать схему, которая позволит изменять соотношение крутящего момента и скорости вращения. Произведение этих двух величин как раз и представляет собой мощность. Увеличивая одну из них при постоянной отдаче двигателем мощности, трансмиссия уменьшает вторую, что необходимо для обеспечения работы автомобиля в различных дорожных условиях и на разных скоростях. Причём этим соотношением должен оперативно управлять водитель или электронные системы машины. Практически это выражается в виде изменения передаточного числа трансмиссии. Таким образом, трансмиссия автомобиля это посредник между мотором и ведущими колёсами.

Помимо этого, силовая передача должна позволять выбирать момент, подаваемый на каждое колесо. В идеале — от нуля до максимума, хотя не все схемы на это способны. В простых случаях достаточно нагрузить крутящим моментом два ведущих колеса.

Устройство электромобиля

Физические принципы работы

По способу передачи момента возможны различные варианты исполнения.

  • Механическая трансмиссия. Представляет собой набор валов и шестерёнчатых передач. Гидроавтоматические коробки также относятся к данной группе, поскольку гидравлика и электроника там используются только для управления процессом переключения передач.
  • Гидравлическая трансмиссия. Практически не применяется на автомобилях, хотя есть примеры её использования в мототехнике. Базовым принципом является использование гидронасоса высокого давления с одной стороны и гидромоторов в качестве исполнительных механизмов. Между ними расположена напорная магистраль с гибкими шлангами.
  • Электрическая трансмиссия. Выглядит самой простой и эффективной, видимо за ней будущее. К двигателю подсоединён генератор, вырабатывающий ток большой мощности, которым легко управлять и передавать его к исполнительным устройствам. В их роли применяются электромоторы. Мотор можно устанавливать на каждое ведущее колесо, реализуя любой алгоритм управления. В случае чистого электроавтомобиля в качестве источника энергии используется не генератор, а аккумуляторная тяговая батарея. Применяется реверсирование при реализации режима рекуперации энергии для подзаряда батареи при торможениях.
  • Гибридные схемы. Например, совместное использование механической передачи на одну ось и электрической — на другую. По такому принципу уже построены некоторые серийные автомобили.

Устройство электромобиля

Устройство электромобиля

Виды привода

По количеству задействованных ведущих колёс возможны разные системы передачи момента. Трансмиссия автомобиля состоит из механизмов, реализующих эти схемы.

  • Задний привод. Двигатель располагается впереди автомобиля или по центру кузова в пределах колёсной базы, или сзади над осью, или в заднем свесе. Коробка передач для организации лучшей развесовки может быть в блоке с двигателем или с главной передачей на задние колёса.
  • Передний привод. Используется в массовых автомобилях, хотя иногда его применяют и в более дорогих классах, а также в лёгких грузовиках. Разница может быть лишь в поперечном расположении силового агрегата или продольном. Первая схема более компактна и проще реализуется.
  • Подключаемый полный привод. Возможно много вариантов, но чаще всего используются два. На утилитарных внедорожниках водитель вручную подключает передний мост на тяжёлых участках при постоянном заднем. У кроссоверов используется электронная или вязкостная муфта, подключающая задний мост, постоянно в этом случае используется передний.
  • Постоянный полный привод. В машине всегда задействованы для создания тяги все колёса. Различные механические и электронные устройства могут изменять соотношение момента по осям или даже по колёсам.

Устройство электромобиля

Состав и функции отдельных узлов

Перечислим всё то, что входит в трансмиссию автомобиля.

Сцепление

Служит для разъединения двигателя с коробкой передач в автомобилях с механической или роботизированной КПП. Это необходимо при трогании с места и переключении передач. Может управляться водителем или сервоприводом со стороны электронного блока, заведующего режимами коробки с автоматическим переключением.

Сцепление бывает с одним диском или набором фрикционов, сухим или работающим в масле. Чаще всего применяется сухое однодисковое сцепление, состоящее из ведущего диска с нажимной пружиной диафрагменного типа, закреплённого на маховике коленвала, ведомого диска, скользящего по шлицам первичного вала коробки, и выжимного подшипника. Привод выключения сцепления гидравлический или тросовый. Часто рабочий гидроцилиндр сцепления объединён с выжимным подшипником.

При нажатии на педаль или активации сервопривода выжимной подшипник смещается по валу коробки и сжимает пружину ведущего диска. Ведомый перестаёт давить на поверхность маховика, и связь двигателя с коробкой прерывается.

Устройство электромобиля

Коробка передач

Самый сложный узел трансмиссии. Именно в нём осуществляется изменение общего передаточного числа для адаптации режима работы двигателя к конкретной дорожной ситуации. Коробки могут иметь различную конструкцию.

  • Механические КПП. Смена передач происходит путём задействования тех или иных пар шестерён между ведущим и ведомым валами. Свободно вращающиеся на валах шестерни блокируются зубчатыми муфтами, снабжёнными синхронизаторами для более плавного переключения.
  • Роботизированные МКПП. Конструктивно аналогичны, но переключение производится электроприводами, которые управляются электронным модулем. Педаль сцепления отсутствует, с точки зрения водителя это коробка-автомат. Могут снабжаться двумя сцеплениями и двумя наборами шестерён, чётного и нечётного ряда. В этом случае переключение многократно ускоряется, поскольку во время разгона на каждой передаче следующая уже включена, остаётся только разомкнуть одно сцепление и сомкнуть другое. Такой тип принято называть преселективной коробкой, или DSG.
  • Гидромеханические автоматические коробки. Выбор передач происходит замыканием мокрых фрикционов в планетарных наборах шестерён. Отличаются плавностью работы, многоступенчатостью и сложными адаптивными алгоритмами электронного управления. При этом расход топлива выше, чем у механики. Вместо сцепления применён гидротрансформатор, состоящий из двух турбин, работающих в масле.
  • Вариаторы. Представляют собой два шкива переменного диаметра, между которыми работает приводной ремень, иногда состоящий из металлических звеньев цепного типа. Это коробка бесступенчатого переключения, хотя часто в ней искусственно имитируется переключение виртуальных передач.

Устройство электромобиля

Устройство электромобиля

Раздаточные коробки

Обычно называются просто раздатками. Служат для распределения крутящего момента от КПП по ведущим мостам. Могут содержать демультипликатор, то есть дополнительную ступень повышения передаточного числа. Такая функция полезна внедорожникам, поскольку умножает крутящий момент на труднопроходимых участках, снижая при этом скорость на каждой передаче основной КПП.

Устройство электромобиля

Устройство электромобиля

Ведущие мосты

Служат для разворота направления вращения карданных валов к колёсам с одновременным дополнительным понижением передаточного числа. Применяются в основном пары гипоидного зацепления для снижения шумности работы. Здесь же устанавливаются межколёсные дифференциалы, иногда блокируемого типа. Блокировка важна для внедорожников, а также для спортивных автомобилей, где она позволяет применять векторное руление на больших скоростях и предельных режимах работы шин.

Устройство электромобиля

Карданные валы

Бывают двух типов — с применением классических крестовин или ШРУС, шарниров равных угловых скоростей. В последнем случае передача момента под большими углами происходит с меньшим уровнем вибраций. Карданными валами различного типа приводятся ведущие мосты, а также они передают вращение от редукторов к ступицам колёс.

Основным вектором развития автомобильных трансмиссий выглядит всё большее внедрение электрических и электронных устройств. Валы и шестерни заменяются электропроводкой и электромоторами, блокировки дифференциалов имитируются подтормаживанием отдельных колёс, применение механических КПП постепенно сокращается. Вершиной эволюции на данный момент представляется экологически чистый электромобиль, где трансмиссия в обычном понимании слова отсутствует полностью.

Устройство электромобиля

Видео: Что такое трансмиссия автомобиля простыми словами

Устройство электромобиля Информационно-аналитическое издание ТЕХНОmagazine

Издается с 2007 года

  1. Главная страница
  2. Развитие технологий
  3. Электрические трансмиссии в строительно-дорожных машинах

Электрические трансмиссии в строительно-дорожных машинах

Насколько перспективны электрические трансмиссии в соревновании с механическими и гидравлическими приводами? Одним из огромных движителей и тормозов технического прогресса является стандартизация. Фирмы-производители, лидирующие сегодня на рынках, частью успеха обязаны своим изобретениям и разработкам.

Как разрабатывается техника

Ноу-хау – это, по сути, информация о том, как делать конкурентоспособную продукцию. Пассивное его использование ограничено по времени: заканчиваются сроки действия патентов, появляются альтернативные технологические решения, возможна утечка информации. То, что было достоянием одного производителя, через короткое время становится уже стандартом для других участников рынка. Регламент(диктует производителю как должно быть, а ноу-хау опережает стандарт или открывает новую, еще не нормированную, технологию. Стандартизация, делая доступными апробированные новинки, прогрессивна и тут же своими регламентами сковывает свободу творцов. (Само ноу-хау – стандарт в зародыше, новое правило).

Устройство электромобиля

Покупать или делать самому? Чтобы покупать, средства нужно заработать. Значит все равно что-то нужно делать самому. Стандартизация расширяет область известных решений, готовых товаров, то есть возможности покупки. Это способствует углублению специализации производства.

В строительно-дорожном машиностроении, как и в других отраслях, увеличивается доля покупных изделий, комплектующих. Творческая мысль конструкторов вначале использует накопленный мировой опыт – стандартизацию и только потом, если что-то нельзя или не выгодно купить, изобретает это. Широкому применению покупных комплектующих в отрасли способствует малосерийность производства и стандартизация узлов. С прошлых времен сохранились предприятия, которые многое делают сами и сегодня являются лидерами в строительно-дорожном машиностроении: Caterpillar, Komatsu, Volvo и т.д. Другие, более молодые на этом рынке фирмы, такие как JCB, Liebherr, пытаются освоить производство сложных изделий: двигателей, гидравлики и др. Критерием конкурентоспособности производимых комплектующих являются их продажи другим фирмам.

Будущее за электрической трансмиссией

Множество предприятий, производящих конечную продукцию, покупают двигатели, трансмиссии, гидравлику у других производителей. Гидростатические трансмиссии получают все более широкое применение в строительно-дорожных машинах и других самоходных механизмах. Этому способствуют отличные компоновочные возможности и наличие готовых, проверенных, качественных гидроагрегатов.

Успехи гидростатики готовят место для электропривода. Малый диаметр и вес проводов создают дополнительные удобства в передаче мощности потребителям. Меньшая зависимость электричества от температуры окружающей среды по сравнению с маслами и более широкие типоразмерные ряды электроагрегатов как в меньшую, так и в большую стороны, являются преимуществами данных технологий. Перспективность электроприводов заставляет сегодняшних лидеров проводить соответствующие опытно-конструкторские работы. Caterpillar уже более 10 лет занимается в данном направлении, и на выставке Conexpo – 2008 представила опытный образец гусеничного бульдозера D7E с электрической трансмиссией. Компания Volvo разработала проект фронтального колесного погрузчика на электротяге.

ЧТЗ еще в 1956 году изготовил дизель-электрический трактор, затем освоил его производство и является первым и, пока, единственным в мире предприятием, серийно изготовляющим гусеничные бульдозеры с электрической трансмиссией. Использование даже части возможностей электропривода позволило решить невозможную тогда задачу – получить мощный бульдозер без освоения производства гидромеханической трансмиссии и специального нового двигателя. Продолжение работ по совершенствованию электропривода бульдозера позволяют заводу создавать задел для перспективных строительно-дорожных машин. Большая часть электрооборудования производится специализированными предприятиями. Развитие электроприводов, повышение их конкурентоспособности является ещё одним шагом к созданию более совершенной техники путем расширения стандартизации, покупки готовых узлов и агрегатов. Большой приход электромашин в строительно-дорожное машиностроение представляется как естественное логическое продолжение технического прогресса. Сегодня это прогноз. В таком прогнозе принимали участие специалисты Челябинского тракторного завода, и он совпадает с мнением ряда специалистов Caterpillar, Volvo и других фирм.

Дизель-электрический трактор ДЭТ

В январе 1961 года на ЧТЗ началось производство дизель-электрических тракторов мощностью 250 л.с. Большое, как говорится, видится на расстоянии. Достаточно ли было времени, чтобы разглядеть и оценить ДЭТ? В 1953 году Исаков П.П., новый главный конструктор ЧТЗ, принял заказ на создание 250-сильного гусеничного трактора. Его предшественник, Балжи М.Ф., отвечал на этот заказ: «спроектировать трактор нельзя».

В СССР тогда не было тракторного двигателя мощнее 140 л.с. Нартов Я.Г., Сильченко Л.Р., Уманский А., Уткин В.Н., Чудаков В.Д., Щербаков В.А., Яковлев Г.С. (ЧТЗ), Богоявленский В.Н. (г. Москва) во главе с Исаковым П.П. нашли решение многих технических проблем. В частности была применена электрическая трансмиссия, известная конструкторам ЧТЗ по немецким самоходным артиллерийским установкам «Фердинанд».

В апреле 1956 года трактор был изготовлен. Реальная потребность в мощных бульдозерах помогла в освоении производства. Машина получилась уникальная. Аналогов не было. Ее появление вызвало большой интерес у специалистов.

На Первой выставке строительно-дорожного машиностроения в Москве в 1956 году были представлены ДЭТ-250 производства ЧТЗ и Komatsu D-250. Машины одного тягового класса и самые большие в то время бульдозера двух компаний. ДЭТ выделялся среди коллег, как лебедь среди гусей, при одинаковом весе он имел бо’льшие размеры. Что это означает, не могли объяснить и создатели машины.

Потребность в тяжелых бульдозерах была большой. Производство ДЭТ-ов достигло 500 шт. в год и определялось количеством выделяемых Госпланом дефицитных электромашин. Шло время. Аналогов у ДЭТ не появлялось. Даже свои заводские конструкторы машин по подобию ДЭТ не проектировали. Модернизация шла медленно. Модификаций почти не было. Зачем? Ведь спрос гарантирован.

Устройство электромобиля

Komatsu, тем временем, создали машину большего типоразмера в классическом исполнении — D-355. Он составляет сегодня значительную часть парка тяжелых бульдозеров России. В СССР же, попытка заменить ДЭТ-250 трактором Т-500 из семейства Т-220, Т-330, Т-500 провалилась. Через десятилетие после начала производства стало проясняться, что означают бо’льшие размеры ДЭТ по сравнению с его одноклассниками. Бульдозер проявил себя как мобильная машина. Он выполняет две задачи: перемещает грунт и легко переезжает с одного рабочего места на другое – этакий двоеборец сочетающий противоположное: тяжелую и легкую атлетику.

Техника развивается, бульдозеры тоже. Например: Liebherr упорно доказывает преимущества гидростатической трансмиссии, Caterpillar внедрила на бульдозерах треугольную гусеницу и считает электрические трансмиссии перспективными. Фирмы Eimco и ЧТЗ пытались радикально изменить компоновку – не получилось. Увеличивали рабочие скорости на Т-130 – вернулись к прежним. А вот микроподрессоривание ходовой части тяжелых машин прижилось и стало классикой.

ДЭТ состоялся. Каково его будущее? Ведущий конструктор Устьянцев Л.П., приняв эстафету от создателей необычной машины, смог пройти свой этап и передать дело Игнатьеву В.В. Стоять на месте нельзя – вытеснят.

Источник http://autoleek.ru/dvigatel/jelektricheskij-dvigatel/ustrojstvo-jelektromobilja.html
Источник http://autobibikka.ru/transmissiya-avtomobilya/
Источник Источник http://t-magazine.ru/pages/elektrotransmission/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Замена масла в АКПП в Новосибирске

Замена масла в АКПП в Новосибирске

Особенности частичной замены Трансмиссионная жидкость выполняет огромное количество разнообразных функций. Среди них отмечают следующие: ликвидация вещества, образующихся в результате изнашивания и накапливающихся в специальном поддоне; поддержание должного уровня температуры; смазывание деталей. Время замены смазки напрямую зависит от разновидности АКПП. При обычных условиях эксплуатации смазка подлежит замене после достижения 70 тыс. километров пробега. Замену проводят и […]

Можно ли купить КПП на Ниссан у официального дилера в 2022 году

Можно ли купить КПП на Ниссан у официального дилера в 2022 году

Коробка переключения передач – это важная составляющая автомобиля Ниссан. Она предназначается для изменения скорости и крутящего момента, коррекции траектории движения автомобиля, разъединения коленчатого вала. Где можно купить КПП на Ниссан? Приобретая коробку передач, нужно обратить внимание на гарантийный срок. Каждая КПП должна пройти проверку и иметь соответствующий документ. Замену этого устройства лучше не проводить самостоятельно, […]

Яндекс.Метрика