Автомобильные датчики

Автомобильные датчики

Электронные системы управления современного автомобиля немыслимы без датчиков. Автомобильные датчики оценивают значения неэлектрических параметров и преобразуют их в электрические сигналы. В качестве сигнала выступает напряжение, ток, частота и др. Сигналы преобразуются в цифровой код и передаются в электронный блок управления, который в соответствии с заложенной программой приводит в действие исполнительные механизмы.

Датчики бывают активными и пассивными. В активном датчике электрический сигнал возникает за счет внутреннего энергетического преобразования. Пассивный датчик преобразует внешнюю электрическую энергию.

Датчики применяются практически во всех системах автомобиля. В двигателе они измеряют температуру и давление воздуха, топлива, масла, охлаждающей жидкости. Ко многим движущимся частям автомобиля (коленчатый вал, распределительный вал, дроссельная заслонка, валы в коробке передач, колеса, клапан рециркуляции отработавших газов) подключены датчики положения и скорости. Большое количество датчиков используется в системах активной безопасности.

В зависимости от назначения различают следующие типы автомобильных датчиков: положения и скорости, расхода воздуха, контроля эмиссии отработавших газов, температуры, давления.

Датчики положения и скорости

Преобразование линейного или углового перемещения контролируемого объекта в электрический сигнал производится с помощью датчиков положения и скорости. В автомобиле используются датчики положения коленчатого вала, положения распределительного вала, положения дроссельной заслонки, уровня топлива, положения педали акселератора, частоты вращения колеса, угла поворота рулевого колеса.

Датчики положения и скорости выполняются контактными или бесконтактными. Несмотря на то, что предпочтение отдается бесконтактным датчикам, контактные устройства еще широко применяются. При всех достоинствах, контактные датчики имеют один существенный недостаток – склонность к загрязнению и, соответственно, снижение точности измерений.

Автомобильные датчики

К контактным датчикам положения относятся потенциометры с подвижными контактами, которые измеряют линейные и угловые перемещения объекта. Подвижные контакты перемещаются по длине переменного резистора и изменяют его сопротивление, пропорциональное фактическому перемещению объекта. Потенциометры широко используются в качестве датчика положения дроссельной заслонки, датчика положения педали газа, объемного расходомера воздуха, датчика уровня топлива и др.

В основу работы бесконтактных датчиков положения и скорости положены различные физические явления и эффекты, и соответствующие им датчики: индуктивные, Виганда, Холла, магниторезистивные, оптические и множество других.

Индуктивный датчик широко используется в качестве датчика положения коленчатого вала. Он содержат постоянный магнит, магнитопровод и катушку. Когда стальной объект (зуб шестерни) приближается к датчику, магнитное поле увеличивается, а в катушке наводится переменное напряжение. В отличие от индуктивных датчиков датчики Виганда не используют постоянный магнит, а активируются внешним магнитом.

Автомобильные датчики

Наиболее востребованные бесконтактные датчики построены на эффекте Холла. Суть эффекта заключается в том, что постоянный магнит, связанный с измеряемым объектом, при вращении генерирует напряжение, пропорциональное угловому положению объекта. В датчиках Холла используется несколько схем измерения положения и скорости: вращающийся прерыватель, многополюсный кольцевой магнит, ферромагнитный зубчатый ротор. Для измерения угловой скорости зубчатого ротора применяется дифференциальный датчик Холла – два рядом расположенных измерительных элемента, позволяющих видеть зуб и впадину одновременно.

Магниторезистивные датчики начали применяться сравнительно недавно, но очень популярны. Они построены на магниторезистивном эффекте — свойстве некоторых токонесущих материалов изменять свое сопротивление во внешнем магнитном поле. Различают анизотропные магниторезисторы (АМР) и гигантские магниторезисторы (ГМР). АМР-датчики используют электрическое сопротивление ферромагнитных материалов. Измерительный элемент ГМР-датчика состоит из чередующихся ферромагнитных и немагнитных слоев. Анизотропные магниторезисторы применяются в датчике угла поворота рулевого колеса.

В оптическом датчике для определения углового положения используются светомодулирующий диск с чередующимися прозрачными и непрозрачными секторами. Диск располагается между светодиодом и фоторезистором. При перемещении (повороте) диска на фоторезисторе вырабатываются электрические импульсы, по которым определяется угол и скорость поворота вала.

Датчики расхода воздуха

Расход воздуха, поступающего в двигатель, определяется по объему или массе. Датчики определяющие расход воздуха по объему называют объемными расходомерами. Работа таких датчиков построена на оценке перемещения заслонки, пропорционального величине потока воздуха.

Автомобильные датчики

Расход воздуха по массе оценивается датчиком массового расхода воздуха. Наибольшее применение нашли микромеханические расходомеры, построенные на тонкопленочных нагреваемых элементах — терморезисторах. Воздух, проходя через терморезисторы, охлаждает их. При этом, чем больше проходит воздуха, тем сильнее охлаждаются терморезисторы. Определение массового расхода воздуха построено на измерении мощности и тока, необходимых для поддержания постоянной температуры терморезисторов.

Датчики контроля эмиссии отработавших газов

Регулирование содержания вредных веществ в отработавших газах обеспечивают датчики контроля эмиссии, к которым относятся датчик концентрации кислорода и датчик оксида азота.

Автомобильные датчики

Кислородный датчик (другое название – лямбда-зонд) устанавливается в выпускной системе и в зависимости от содержания кислорода в отработавших газах вырабатывает определенный сигнал. На основании сигнала система управления двигателем поддерживает стехиометрический состав топливно-воздушной смеси (т.н. лямбда-регулирование).

На современных автомобилях, оборудованных каталитическим нейтрализатором, устанавливается два датчика концентрации кислорода. Кислородный датчик на выходе из нейтрализатора контролирует его работоспособность и обеспечивает содержание вредных веществ в отработавших газах в пределах установленных норм.

Датчик оксидов азота контролирует содержание оксидов азота в отработавших газах. Он устанавливается в выпускной системе бензиновых двигателей с непосредственным впрыском топлива после дополнительного (накопительного) нейтрализатора. Датчик включает две камеры. В первой камере оценивается концентрация кислорода. Во-второй камере происходит восстановление оксидов азота на кислород и азот. Концентрация оксидов азота оценивается по величине восстановленного кислорода.

Датчики температуры

Измерение температуры производится в различных системах автомобиля:

Температуры наружного воздуха;

Температуры воздуха в салоне автомобиля

Автомобильные датчики

Для измерения температуры применяются терморезисторы с отрицательным температурным коэффициентом. С увеличением температуры сопротивление термистора снижается, соответственно возрастает ток. В качестве датчика температуры используется также термопара – проводник, состоящий из двух различных металлов и под воздействием температуры генерирующий термоэлектрическое напряжение.

Датчики давления

В современных автомобилях используется большое количество датчиков давления, с помощью которых измеряется давление во впускном коллекторе, давление топлива в системе впрыска, давление в шинах, давление рабочей жидкости в тормозной систем, давления масла в системе смазки.

Автомобильные датчики

Для оценки давления применяется пьезорезистивный эффект, который заключается в изменении сопротивления тензорезистора при механическом растяжении диафрагмы. Измеряемое давление может быть абсолютным или относительным. Датчик давления во впускном коллекторе измеряет абсолютное давление, т.е. давление воздуха относительно вакуума.

Представленная классификация охватывает далеко не все автомобильные датчики. Необходимо упомянуть ряд других датчиков: датчик детонации, датчик уровня масла, датчик дождя. Датчик детонации оценивает вибрацию двигателя, которая сопровождает неконтролируемое воспламенение топливно-воздушной смеси. Датчик представляет собой пьезоэлектрический элемент, который при вибрации генерирует электрический сигнал.

Датчик уровня масла в современном двигателе заменяет функции щупа. Уровень масла может измеряться поплавковым переключателем или более совершенным тепловым датчиком, который кроме уровня масла измеряет его температуру. Датчик дождя обеспечивает автоматическую работу стеклоочистителей. Конструктивно он объединен с датчиком освещенности.

Устройство автомобилей

Приборы измерения давления

Назначение и типы приборов для измерения давления

Современные автомобили оснащаются различными механизмами, системами и агрегатами, использующими в качестве рабочего тела жидкости и газы. Это могут быть различные гидравлические и пневматические устройства, функционирующие под действием сжатых жидкостей, масел, воздуха и газов, при этом основным параметром рабочего тела в таких устройствах является его давление, которое необходимо постоянно контролировать, а значит и измерять.

Приборы измерения давления (манометры) применяются в автомобиле для контроля давления:

  • Масла в двигателе;
  • Воздуха в пневматической тормозной системе;
  • Масла в гидромеханической передаче;
  • В централизованной системе подкачки воздуха.

Кроме того, в специализированных автомобилях, используемых, например, для размещения и перевозки подъемно-транспортного оборудования, могут применяться манометры для контроля давления масла в гидросистемах и пневмоприводах.

Эксплуатация автомобиля с неисправными приборами контроля, давления масла и воздуха запрещена, т.к. может привести к аварийным режимам.

Для экстренного привлечения внимания водителя во многих системах манометры дублируются сигнализатором аварийного давления.

Кроме того, к приборам, измеряющим давление, относятся и приборы для измерения разрежения – вакуумметры. В последние годы широко применяется прибор, контролирующий разрежение во впускном коллекторе – эконометр. Руководствуясь указаниями этого прибора, водитель имеет возможность выбора режима движения, соответствующего наименьшему расходу топлива.

Автомобильные датчики

По способу измерения манометры делятся на приборы прямого действия и электрические.
Приборы прямого действия бывают механические и жидкостные.
Механические приборы для измерения давления имеют чувствительный элемент и указатель, устанавливаемый на приборной панели. Контролируемая среда подводится к чувствительному элементу прибора по трубопроводу.
Жидкостные приборы прямого действия для измерения давления (ртутные, спиртовые барометры и т. п.) в конструкции автомобилей не используются.

Электрические манометры основаны на преобразовании неэлектрических величин в электрические, и содержат связанные между собой манометрический датчик, к которому подводится контролируемая среда, и указатель, располагаемый на щитке приборов или в зоне видимости водителя.

Манометры прямого действия

К приборам непосредственного (прямого) действия относятся манометры с плоской или овальной трубчатой пружиной.

Основной деталью манометра с трубчатой пружиной (рис. 1) является пружина 4, представляющая собой упругую плоскую или овальную трубку. Трубчатая пружина изогнута по окружности и представляет собой не полный виток. Один конец трубки впаян в штуцер 7, через который в отверстие поступает жидкость или воздух. Под действием давления жидкости или воздуха трубка распрямляется, а так как второй конец соединен с тягой 6, то через передаточный механизм, закрепленный в корпусе 1, приводится в движение стрелка 2 прибора.

Автомобильные датчики

Рис. 1. Манометр непосредственного (прямого) действия: 1 — корпус; 2 — стрелка; 3 — спиральная пружина; 4 — трубчатая пружина; 5 — трубчатый сектор; 6 — тяга; 7 — штуцер; 8 — подвижная плата; 9 — винт; 10 – трибка

При увеличении давления внутри трубки происходит ее деформация (по оси Y она увеличивается, а по оси X уменьшается). При этом длина наружной дуги А и внутренней дуги А1 стенок трубки практически не меняется. Вследствие этого кривизна дуги, по которой изогнута трубчатая пружина, уменьшается, и трубка разгибается. При этом ее свободный конец перемещается, передвигая стрелку прибора. Регулировка осуществляется с помощью подвижной платы 8 и винта 9.

В манометрах с трубчатой пружиной перевод стрелки 2 осуществляется трубчатым сектором 5 и трибкой 10. Пружина 3 на оси стрелки компенсирует влияние зазоров в передаточном механизме на показание прибора.

Эконометр , устанавливаемый на автомобилях (например, ВАЗ-2108, -2109), работает аналогично. Манометрическая трубчатая пружина в данном случае реагирует не на увеличение давления, а на уменьшение, т.е. сжимается. По положению стрелки в одной из трех зон шкалы эконометра водитель может оценивать экономичность выбранного режима движения, а также получать информацию о ряде неисправностей двигателя.
Если стрелка прибора находится слева, двигатель работает под увеличенной нагрузкой или с большим ускорением. При этом увеличивается расход топлива, и чтобы этого избежать водитель должен перейти на другую передачу или изменить режим движения, тем самым подобрав оптимальный режим работы двигателя.
Если стрелка находится справа, это указывает на оптимальный режим работы двигателя.
Колебания стрелки в левой зоне указывают на неисправные клапаны или неправильную регулировку системы зажигания. Если колебания в левой зоне и частично захватывают правую, это означает, что имеет место потеря компрессии в двигателе.

Недостатками манометров прямого действия является их чувствительность к вибрациям и невысокая перегрузочная способность. Кроме того, трубопроводы, подводящие контролируемую среду к приборам, имеют склонность к засорению и даже закупорке, что приводит к погрешностям в показаниях и отказам.
По этой причине дальнейшее развитие манометрических измерителей связано с использованием электрических устройств.

Термобиметаллический импульсный манометр

Термобиметаллический импульсный манометр состоит из датчика и указателя.
Датчик манометра (рис. 2) имеет мембрану 10, на центральную часть которой опирается выступом 11 упругая пластина 1 с контактом, соединенным с «массой».
В датчике размещена П-образная термобиметаллическая пластина, электрически изолированная от «массы». На рабочее плечо 2 пластины навита обмотка 3, один конец которой приварен к термобипластине, а второй присоединен к выводному зажиму 6 через упругий вывод 5. На конце рабочего плеча термобипластины установлен второй контакт 4.
При отсутствии давления под мембраной контакт 4 соединен с контактом на упругой пластине 1. Второе плечо термобиметаллической пластины закреплено на упругом держателе 7, положение которого вместе с биметаллической пластиной можно изменять поворотом рычага 8.

Указатель термобиметаллического импульсного манометра (рис. 3) состоит из П-образной термобиметаллической пластины 3, которая одним концом закреплена на регулировочном зубчатом секторе 8, а другим соединена со стрелкой 7.
На рабочее плечо термобиметаллической пластины 3 навита обмотка 1, включенная последовательно с обмоткой датчика. Оба конца этой обмотки выведены на зажимы 2 прибора.
Второе плечо пластины 3, так же, как и датчика, компенсирует изменения температуры окружающей среды. Рабочий конец термобиметаллической пластины указателя имеет крючок 6, зацепленный со стрелкой.

При повышении давления под мембраной датчика упругая пластина с контактом поднимается и входит в контакт с термобиметаллической пластиной. Ток, проходящий по образовавшейся в следствия этого цепи, нагревает термобиметаллическую пластину указателя. Контакты датчика при нагревании рабочего плеча термобиметаллической пластины из-за ее изгиба размыкаются и прерывают ток до момента остывания пластины и последующего размыкания контактов.

При установившемся давлении в датчике происходит периодическое размыкание контактов. При этом время разогрева термобиметаллической пластины датчика, когда контакты замкнуты, зависит от степени ее деформации, т. е. от давления в датчике.
Время охлаждения пластины, когда контакты разомкнуты, зависит от степени нагрева пластины относительно температуры окружающей среды.

Чем выше давление в датчике, тем больше температура пластины указателя, так как время замкнутого состояния контактов датчика относительно времени разомкнутого состояния больше. Эффективный ток в обмотке указателя увеличивается, его термобиметаллическая пластина деформируется и перемещает стрелку по шкале.

Логометрический манометр

Логометрический манометр состоит из реостатного датчика и магнитоэлектрического указателя.

Реостатный датчик (рис. 4) логометрического манометра состоит из основания 1 со штуцером, на котором закреплена гофрированная мембрана 2 с помощью стального ранта 3, несущего на себе реостат 4 с передаточным механизмом. В центре мембраны установлен толкатель 11, на который опирается качалка 9 с регулировочными винтами 10. Качалка воздействует на ползунок 5 реостата, поворачивая его вокруг оси 6. Пружина 8 противодействует смещению ползунка.

Чтобы пульсации давления в контролируемой системе не вызывали колебаний ползунка по реостату, в канал штуцера датчика запрессован наконечник 12 со стержнем для очистки канала, который создает большое сопротивление потоку масла или воздуха и тем самым сглаживает влияние резких изменений давления на показания прибора.

При подаче масла или воздуха в датчик мембрана под давлением выгибается и через качалку и опорную площадку 7 двигает ползунок по реостату. При снижении давления мембрана под действием собственной упругости опускается, и возвратная пружина 8 сдвигает ползунок и детали рычажной передачи в исходное положение.

В качестве указателя логометрического манометра применяется магнитоэлектрический прибор (рис. 5, а), состоящий из двух пластмассовых полукаркасов 2 на которые намотаны три измерительные индукционные катушки 5, причем одна катушка расположена под углом 90˚ к двум другим. Постоянный магнит 3 установлен внутри каркаса на одной оси со стрелкой 6.

Магнит может поворачиваться, ориентируясь вдоль магнитных силовых линий результирующего вектора напряженности трех индукционных катушек.

В каркасе установлен подпятник 4 оси магнита и стрелки. Мостик 7 закреплен на каркасе и служит опорой шкалы прибора. Между мостиком и шайбой, закрепленной на оси магнита, а также в подшипник вводят кремнийорганическую жидкость, которая демпфирует колебания подвижной системы в условиях вибрации.
Для возврата подвижной системы в нулевое положение при включенном приборе используется миниатюрный магнит, находящийся между полукаркасами.
Для исключения воздействия на показания прибора посторонних магнитных полей и влияния полей индукционных катушек на показания других приборов собранный каркас размещают в цилиндрическом экране 1.

При включении датчика и указателя в цепь питания (рис. 5, б) ток проходит по индукционным катушкам W1, W2 и W3 по реостату датчика и термокомпесационному резистору Rтк. Изменение давления в контролируемой системе вызывает изменения сопротивления реостата датчика , подключенного параллельно индукционной катушке W1.
Ток, протекающий по индукционной катушке W1, изменяет свое значение, что приводит к изменению величины вектора напряженности поля, создаваемого этой катушкой. Изменение величины сопротивления реостата Rд оказывает влияние на величину тока, протекающего по двум другим индукционным катушкам, но это влияние не соль существенное, как в случае с индукционной катушкой W1. Изменение направления результирующего вектора напряженности вызывает отклонение магнита и стрелки манометра.

Логометрические автомобильные приборы в настоящее время вытесняют импульсные термобиметаллические, поскольку имеют ряд существенных преимуществ.
Датчики логометров не имеют размыкающих контактов, которые подвержены эрозионному износу и создают радиопомехи.
Логометрический указатель имеет больший угол перемещения стрелки, что дает возможность получить шкалу прибора с лучшей читаемостью.
В логометрическом указателе лучше компенсируются влияния изменения питающего напряжения и изменение температуры окружающей среды, так как векторы напряженности магнитных полей всех индукционных катушек изменяют свою величину практически пропорционально изменению питающего напряжения или температуры окружающей среды. Поэтому направление результирующего вектора напряженности, а значит, и положение стрелки прибора не зависят от этих внешних факторов.

Сигнализаторы падения давления

Применение на автомобиле манометра со стрелочным указателем давления часто недостаточно для обеспечения надежного контроля. Изменение давления за допустимые пределы может наступить неожиданно, и в этом случае сигнализатор давления в отличие от стрелочного прибора немедленно привлечет внимание водителя. В некоторых случаях в контролируемой системе вообще применяют только сигнализатор, не используя стрелочный прибор.
На автомобилях находят применение сигнализаторы аварийного (минимального) давления в системе смазывания, аварийного давления в пневмоприводе, в вакуумной системе открывания дверей и других рабочих системах автомобиля.

В качестве примера рассмотрим конструкцию датчика аварийного давления, применяемого на автомобилях ВАЗ и КамАЗ.
Датчик (рис. 6) имеет корпус 9 в виде полого штуцера, который внутри разделен на две полости диафрагмой 8 из тонкой полиэфирной пленки. В полость под диафрагмой поступает масло из системы смазки и поднимает её вместе с толкателем 6.

Автомобильные датчики

Рис. 6. Датчик аварийного падения давления: 1 и 7 — контакты; 2 — разъем; 3 — фильтр; 4 — изолятор; 5 — пружина; 6 — толкатель; 8 — мембрана; 9 — корпус

В полости над диафрагмой установлены неподвижный 7 и подвижной 1 контакты и пружина 5, противодействующая перемещению диафрагмы, которая выполняет роль чувствительного элемента датчика.
Сверху корпус закрыт изолятором 4 со штекерным разъемом 2, под которым установлен специальный фильтр 3, уравнивающий давление в надмембранной полости с внешним атмосферным.

При возникновении давления в поддиафрагменном пространстве датчика, сообщенном с контролируемой системой, диафрагма 8 выгибается и размыкает контакты 1 и 7; при падении давления контакты замыкаются, что приводит к включению контрольной лампочки на панели приборов.

Источник Источник http://systemsauto.ru/electric/automotive_sensors.html
Источник Источник http://k-a-t.ru/mdk.01.01_elektro/66-pribory_davlenie/index.shtml

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Промокоды. Ваш путь к скидкам и экономии

Промокоды. Ваш путь к скидкам и экономии

Живем в эпоху, где быстрота и удобство стали неотъемлемой частью нашей повседневной жизни. Электронная коммерция стремительно расширяется, предоставляя нам огромное разнообразие товаров и услуг, доступных всего в несколько кликов. В таких условиях, появляется вопрос: как мы можем максимально сэкономить свои финансовые ресурсы при совершении покупок? Ответ прост – промокоды, которые можно получить по ссылке https://nanya.ru/articles/family_home/promokody-dlya-priyatnogo-otdykha/ […]

Центр шумоизоляции для обустройства автомобилей

Для того, чтобы было комфортно находится в автомобиле, производители в обязательном порядке рассматривают возможность использования шумоизоляционных средств. Такие средства представляют собой возможность в первую очередь заботиться о здоровье семьи и о своем собственном во время прогулки на автомобиле. Центр шумоизоляции предлагает эффективную помощь в создании необходимых показателей шумоизоляции для того, чтобы добиться качества и комфорта […]

Яндекс.Метрика