Кузов автомобиля: сталь, алюминий, карбон и… картон?

Кузов автомобиля: сталь, алюминий, карбон и… картон?

Поделитесь в соцсетях:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)

В середине июля по миру прошла рядовая новость: Land Rover Defender оставляют в производстве. А перед этим еще одна небольшая новость о новой детали от BASF для заднего редуктора Mercedes S-класса. Ну и вспомним главную люкс-новинку первой половины 2015 года – новый BMW 7-серии. Что общего в этих автомобилях? Общее — в использовании разных материалов вместо привычной стали для кузова автомобиля: алюминий, пластик, карбон – давайте посмотрим, за чем будущее автомобилестроения.

Предыстория автомобильных кузовов

Кузов автомобиля – без сомнения, важнейшая его часть: это и место установки всех узлов, и пассажирский салон, и управляемость, и безопасность, и дизайн. В современном понимании кузов легкового автомобиля представляет собой несущую конструкцию из разных сортов стали. Но так было далеко не всегда. Первые автомобили имели рамную конструкцию, которая до сегодня сохранилась на грузовиках и нескольких моделях внедорожников. Также в первых автомобилях нередко использовали дерево при изготовлении деталей кузова.
Революция произошла в 1920-х годах: в 1921-м была представлена Lancia Lambda с несущим кузовом (рама исчезла, всю нагрузку воспринимал кузов). А в 1924 году был представлен Citroen B10 – первый массовый автомобиль Европы с цельностальным кузовом.

11

Подобный подход – цельностальной несущий кузов – царил в мире автомобилестроения десятилетиями, лишь периодически допуская вольности «на тему». Причем зачастую отход от привычной стали был вызван лишь двумя причинами: или экономией (денег, ресурсов), или желанием облегчить кузова. Случаи экономии были особенно актуальными после Второй Мировой Войны, когда промышленности попросту недоставало стального проката. Это привело к необычным результатам в виде Land Rover Series 1 (впоследствии модель Defender; внешние алюминиевые панели) и Willys Jeep Station Wagon «Woodie» (деревянные панели кузова). Желание снизить вес привело к использованию сначала алюминиевых, а теперь и карбоновых кузовов. Но если ранее подобные случаи были редкостью, встречались в дорогих и специфических автомобилях или спорткарах, то теперь алюминий и карбон готовятся выйти на массовый рынок.

Почему? Причина не только в желании научить гражданский автомобиль ехать как спортивный (не без того, но это далеко не первая причина), но больше в маркетинге («вау, у меня карбоновый автомобиль») и в желании вписаться в новые жесткие экологические стандарты по выхлопу, для чего требуется заметное сокращение расхода топлива. А одним из путей снижения расхода является облегчение автомобиля; плюс добавьте упомянутый маркетинг – вот и ответ.

Алюминий как угроза привычной стали

Алюминий является одним из самых привлекательных материалов для создания кузова автомобиля: он легкий и не боится коррозии, а его производственный процесс (отливка, штамповка) несильно отличается от стали. Первый алюминиевый автомобиль уже есть – это модель Audi A8, которая, начиная с первого поколения и до сегодня, выпускается с полностью алюминиевым кузовом.

Кузов автомобиля: сталь, алюминий, карбон и… картон?

Фирменное название Audi ASF расшифровывается как Audi Space Frame, т.е. «пространственная рама Ауди», что недалеко от истины – это несущий кузов, в котором не только панели, но и все усилители были сделаны из алюминия. Концепт Audi ASF был представлен в 1993 году, а уже в 1994-м начался серийный выпуск седана Audi A8 – первого в мире массового автомобиля с полностью алюминиевым кузовом

Уточнение об алюминиевом несущем кузове критически важно, ведь множество других автомобилей также используют алюминий – но в чем же разница? В том, что компания Audi производит несущий алюминиевый кузов, а многие автомобили используют лишь внешние панели, которые крепятся к раме или к основному стальному кузову – т.е. алюминиевые детали в этом случае не несут нагрузку.

Это было одной из основных проблем алюминия – фактически нужно было заново рассчитывать всю силовую структуру кузова, все усилители и распорки, прорабатывать зоны деформации для алюминиевых деталей. Второй существенной проблемой алюминия является метод соединения различных деталей между собой. Так, алюминиевые детали можно сваривать, но только специальным методом и в среде инертных газов, либо с помощью лазерной сварки. Причем этот метод неприменим при соединении стальных и алюминиевых деталей – тогда начинается электрохимическая коррозия и алюминий начинает «ржаветь», постепенно превращаясь в труху. В таких случаях помогут заклепки, причем, чтобы избежать электрохимической коррозии, заклепки имеют тонкий слой нейтрального покрытия, а на всей площади соединения алюминия со сталью нанесен эпоксидный клей-«изолятор». Кстати, склеивание – это еще один способ соединения алюминиевых деталей. Плюс традиционные болты. Причем часто все способы соединения деталей используются в одном автомобиле. К примеру, в том же седане Audi A8 для соединения всех деталей кузова из 13 (!) сортов алюминия, использовано 1847 заклепок, 632 винта, 202 точки сварки, 44 м клееных соединений, 25 м сварки в среде инертных газов, 6 м лазерной сварки.

Автомобиль BMW 5-серии E60 стал первым в мире, где к стальному кузову была прикреплена алюминиевая передняя часть. В этом случае для соединения деталей могли использоваться только те методы, которые не допускали контакта разных материалов. А значит – только заклепки и клей-изолятор.

Автомобиль BMW 5-серии E60 стал первым в мире, где к стальному кузову была прикреплена алюминиевая передняя часть. В этом случае для соединения деталей могли использоваться только те методы, которые не допускали контакта разных материалов. А значит – только заклепки и клей-изолятор.

Являясь пионером серийного использования алюминия в кузове, компания Audi попыталась распространить свою идею на массовый класс, запустив в серию модель Audi A2 с полностью алюминиевым кузовом. Но ни высокие технологии, ни хорошая аэродинамика, ни простор салона, ни попытки снизить цену, используя «обще-VAG-овские» двигатели, не помогли: Audi A2 «не пошла». Возможно, помня пример А2, Audi так и не решилась расширить свою алюминиевую программу на другие модели, оставив алюминиевый несущий кузов только для Audi A8.

Это привело к тому, что сегодня компания Audi уже в числе догоняющих. Ведь еще в 2003 году был выпущен Jaguar XJ с полностью алюминиевым несущим кузовом. Опыт оказался успешен, и нынешний Jaguar XJ также полностью алюминиевый. Мало того, опыт построения алюминиевых кузовов распространился и на другие автомобили группы Jaguar Land Rover: современный Range Rover; последовавший за ним Range Rover Sport; седан Jaguar XE.

Jaguar XE построен на новой модульной платформе iQ [Al], которая состоит из алюминиевого сплава RC5757 (алюминий + кремний + магний) примерно на 70%, включая всю несущую структуру: салон, пол, усилители, передняя и задняя части. Сегодня Jaguar XE приводит статус «полностью алюминиевого авто» в класс D-premium, чем открывает дорогу алюминию к «широким массам»

Jaguar XE построен на новой модульной платформе iQ [Al], которая состоит из алюминиевого сплава RC5757 (алюминий + кремний + магний) примерно на 70%, включая всю несущую структуру: салон, пол, усилители, передняя и задняя части. Сегодня Jaguar XE приводит статус «полностью алюминиевого авто» в класс D-premium, чем открывает дорогу алюминию к «широким массам» Словом, сегодня мы видим уже целый ряд серийных автомобилей разных классов с полностью алюминиевыми кузовами. Но еще больше автомобилей с частично алюминиевыми кузовами – когда из алюминия не весь кузов, но достаточно большая его часть. К примеру, алюминиевый опыт Audi пригодился при создании Audi Q7 2-го поколения (алюминиевая передняя часть кузова; алюминий занимает около 41% в структуре кузова) и для родственных моделей Porsche (в новых Boxter и Cayman алюминий используется в разных частях кузова, его доля – 46%).

Даже подобный частично-алюминиевый кузов позволяет заметно облегчить автомобиль: к примеру, новый Audi Q7 сбросил 70 кг относительно предшественника. Но сравнимый по размерам и классу полностью алюминиевый Range Rover L405 полегчал на 420 кг, из которых 180 кг – на счету алюминиевого кузова, который теперь весит лишь чуть больше, чем кузов Mini Countryman.

Конечно, с алюминием сегодня работают не только Audi и Jaguar Land Rover, но и другие компании. Правда, в основном алюминиевые сплавы используются лишь частично – для крышки капота или багажника, в деталях ходовой части, для «передка» автомобиля, как в случае с уже упоминавшейся BMW 5-серии. Но сегодня компания BMW увлечена другим материалом – карбоном.

Карбон приходит в массы

Модели BMW i3 и BMW i8 перевернули мир. И здесь дело не только в приводе (электро или гибрид), не только в неформатном дизайне с необычными дверями, но и в том, что это первые в мире крупносерийные автомобили с карбоновыми кузовами. Обе модели построены по схожей схеме: снизу расположена алюминиевая платформа Drive с двигателем, подвеской, блоком АКБ; сверху установлен карбоновый кузов Life с салоном, багажником, фарами, дверями; две половинки соединены между собой болтами. Интересно, что являясь одними из самых передовых автомобилей в мире, BMW i3 и BMW i8 фактически возвращают нас к истокам автомобилестроения – рамным конструкциям начала ХХ века.

Куцый BMW i3 на самом деле является революцией в мире автомобилей: электропривод с возможностью подзарядки АКБ от встроенного ДВС-генератора; необычный минивэно-образный кузов с распашными дверями; повсеместное использование переработанных материалов; и, наконец, рамная алюминиево-карбоновая конструкция

Куцый BMW i3 на самом деле является революцией в мире автомобилей: электропривод с возможностью подзарядки АКБ от встроенного ДВС-генератора; необычный минивэно-образный кузов с распашными дверями; повсеместное использование переработанных материалов; и, наконец, рамная алюминиево-карбоновая конструкция

Причем и сам карбоновый кузов BMW i3 очень необычен в своем производственном процессе. Так, при изготовлении карбоновых несущих монококов суперкаров обычно берут слой углеволокна, промазывают его смолой-клеем, затем поверх укладывают следующий слой, причем с ориентацией волокон в другом направлении (как правило, под углом 90 градусов – отсюда и привычный решетчатый рисунок карбона). После чего готовый сформированный кузов-монокок выпекают в печи-автоклаве. В случае с BMW i-серии карбоновый кузов собирают из нескольких деталей, склеивая их между собой: процесс подобен сварке обычного стального кузова. При этом еще и сами детали кузова изготавливают по более простой технологии RTM (Resin Transfer Moulding): это когда в форму детали укладывают несколько слоев углеволокна, затем под давлением нагнетают смолу-клей, и, наконец, выпекают нужную панель кузова. Экономия налицо: и времени (процесс автоматизирован, минимум работы людей); и места (печи для выпекания отдельных деталей меньше, чем печь для цельного монокока). В результате речь идет не о сотне-другой суперкаров с карбоновым кузовом типа «монокок», а о десятках тысяч серийных BMW i3, сопоставимых по цене с обычными «тройками» или «пятерками». При этом сложная алюминиево-карбоновая конструкция обеспечила необходимую жесткость и безопасность и существенно облегчила автомобиль, даже с учетом тяжелой АКБ.

Важно отметить, что «карбоновый автомобиль» компания BMW создает не сама, а в сотрудничестве с американской фирмой SGL Group. Изначально объем работ был оценен в 3 тыс. тонн, но недавно планы пересмотрены – теперь объем производства карбоновых деталей оценивается в 9,5 тыс. тонн ежегодно. А это означает, что немцы верят в карбон и будут развивать данное направление. Первый пример, после революционных BMW i3 и BMW i8, уже есть – новый седан BMW 7-серии G12, который был официально представлен в начале 2015 года.

Кузов BMW 7-серии G12 построен по принципу Carbon Core («Карбоновое ядро»): здесь карбоновые детали присутствуют в различных усилителях, стойках крыши, боковинах кузова и пр.; хотя максимально широко также используется сталь и алюминий. В результате кузов новинки стал легче на 40 кг, не потеряв в безопасности и жесткости. Соединение разнородных материалов – с помощью клея и заклепок. О сложности и дороговизне ремонта умолчим.

Кузов BMW 7-серии G12 построен по принципу Carbon Core («Карбоновое ядро»): здесь карбоновые детали присутствуют в различных усилителях, стойках крыши, боковинах кузова и пр.; хотя максимально широко также используется сталь и алюминий. В результате кузов новинки стал легче на 40 кг, не потеряв в безопасности и жесткости. Соединение разнородных материалов – с помощью клея и заклепок. О сложности и дороговизне ремонта умолчим.

С помощью технологии производства RTM компания BMW приводит карбон на массовый рынок. Однако это далеко не те несущие карбоновые монококи, которые мы привыкли видеть в суперкарах или гоночных автомобилях: в обоих случаях (i-серия или новая «семерка») большую часть нагрузки воспринимает не монокок, а привычная конструкция из алюминия и стали. Вместе с тем, технология RTM позволяет решить две главные проблемы карбона: сложность, скорость, дороговизну производства и возможность ремонта кузова в случае аварии – достаточно лишь вырезать поврежденную деталь и вклеить новую.

А как же пластик? Или что-то другое?

При разговоре об альтернативных материалах для кузова мысль о пластике приходит одной из первых: дешевый, легкий, простой в производстве и ремонте. Конечно, пластик не может нести нагрузки, но почему не использовать его для внешних декоративных деталей кузова: крылья, крышка багажника? Он и используется, причем давно и на самых разных автомобилях: начиная от доступного Renault Clio Symbol и заканчивая суперкаром Chevrolet Corvette.

Недорогой Renault Clio Symbol еще в конце 1990-х годов предложил пластиковые передние крылья – как пример того, что необычные кузовные материалы встречаются не только в суперкарах и люкс-седанах. Вскоре пластиковые детали кузова начали использоваться и на других моделях компании: например, Renault Megane.

Недорогой Renault Clio Symbol еще в конце 1990-х годов предложил пластиковые передние крылья – как пример того, что необычные кузовные материалы встречаются не только в суперкарах и люкс-седанах. Вскоре пластиковые детали кузова начали использоваться и на других моделях компании: например, Renault Megane.

Эксперименты с пластиком и стеклопластиком (пластик, армированный стекловолокном) продолжаются и сегодня. К примеру, недавно компания BASF показала новую деталь для заднего моста Mercedes-Benz S-класса W222: поперечину, изготовленную из особого сорта пластика Ultramid, армированного стеклотканью. Новая деталь на 25% легче алюминиевого аналога, при этом предлагает нужную прочность, не растеряв всех преимуществ обычного пластика (цена и простота производства). А для концепт-кара Smart Vision 2011 года из пластика сделали колесные диски.

Наконец, несколько слов о композитных материалах. Композитом называется материал, который состоит из нескольких материалов, соединенных между собой; каждый из материалов должен отдать свои лучшие качества, а худшее скомпенсировать преимуществами «соседа». Для понимания: в строительства композитом можно назвать железобетон. А в автомобилестроении наиболее популярными композитными материалами являются карбон (углеволокно + смола) и стеклопластик (стекловолокно + пластиковая масса) – их мы рассмотрели выше. Но композиты могут быть и другими. К примеру, компания BMW (да-да, снова BMW!) в свое время разрабатывала трехслойную крышку капота для BMW M3: сверху и снизу скорлупа из карбона, а по центру – наполнитель из картона! Этот капот оказался вдвое легче обычного алюминиевого, да еще и обеспечивал лучшие результаты безопасности при ударе головы пешехода. С таким подходом и весь кузов, собранный из разных материалов, можно назвать композитным.

Новый Mercedes-Benz S-класса W222 собрал в себе «всего понемногу»: основа – классический стальной несущий кузов; плюс алюминиевые двери, крыша (-5,5 кг от аналогичной детали из стали), передняя часть с крыльями (-14 кг), опоры задних амортизаторов; добавим к этому и пластиковый бак (-18 кг) и перегородку багажника (-3 кг). А теперь – возможно, будет и пластиковая поперечина заднего редуктора. На фоне алюминиевых наработок Audi и Jaguar Land Rover да карбоновых автомобилей BMW этот подход не выглядит сверхсовременным, но свои плоды в виде облегчения кузова на 95 кг он дал

Новый Mercedes-Benz S-класса W222 собрал в себе «всего понемногу»: основа – классический стальной несущий кузов; плюс алюминиевые двери, крыша (-5,5 кг от аналогичной детали из стали), передняя часть с крыльями (-14 кг), опоры задних амортизаторов; добавим к этому и пластиковый бак (-18 кг) и перегородку багажника (-3 кг). А теперь – возможно, будет и пластиковая поперечина заднего редуктора. На фоне алюминиевых наработок Audi и Jaguar Land Rover да карбоновых автомобилей BMW этот подход не выглядит сверхсовременным, но свои плоды в виде облегчения кузова на 95 кг он дал

Так из чего же будут делать автомобили в будущем?

Пока что – из стали, но с постепенным расширением списка алюминиевых, пластиковых и карбоновых деталей. Сегодня, с внедрением новых технологий (RTM-карбон; новые сорта алюминия, новые методы его соединения) и расширением перечня моделей из необычных материалов (что приведет к снижению их стоимости), карбон и алюминий будут входить на массовый рынок автомобилей все быстрее и быстрее. Похоже, что уже через 5-10 лет современный автомобиль даже D-класса будет хотя бы частично состоять из карбона или алюминия и окажется существенно легче своих предшественников, что позволит добиться улучшения динамики и топливной экономичности.

Кузов автомобиля: стальной или алюминиевый?

all-kuzov-2947

Сталь до сих пор доминирует при создании кузовов автомобилей у большинства автомобильных концернов. В то же время, медленно, но уверенно складывавшиеся десятилетиями консервативные устои разрушает алюминий. Точнее его сплавы.
Первым революционный шаг сделал автомобильный концерн «Ауди». Как известно, администрация этой компании имеет определенный бзик в отношении безопасности.

Именно этот фактор и обусловил применение алюминиевых сплавов когда разрабатывался такой кузов автомобиля. Разумеется, сразу нужно упомянуть о главном минусе кузовной конструкции из алюминия – это дороговизна. А теперь поговорим о плюсах.
Сегодня автомобильная компания «Ауди» – лидер по применению легких сплавов в конструкции кузовов. И такая тенденция вполне обоснована.

Сравнение веса кузова

Если сравнивать вес «алюминиевого» авто со «стальным», преимущество будет в пользу первого. Это очевидно, но, что это дает? Опытный автолюбитель сразу ответит – легкий кузов дает лучшие характеристики разгона и торможения, управляемости и устойчивости при вхождении в повороты. Да и экономичность автомобиля возрастает.

Чтобы не быть голословным, предлагаем сведущим читателям сравнить две примерно равнозначных по габаритам и мощности модели автомобилей – «Ауди А8» и «Фольксваген-Фаэтон». Несмотря на идентичность, эксплуатационные качества первого значительно лучше только потому, что А8 на 300 кг легче «Фаэтона».

Сравнение по признакам безопасности

Если же говорить о безопасности, то «Ауди» и вовсе выше в этом плане на целую голову. Причина в способности алюминия противостоять скручивающим нагрузкам. Алюминиевый автомобильный кузов жестче, но при этом гораздо лучше поглощает ударную энергию.

Проще говоря, там, где деформируется только передняя часть алюминиевого кузова, стальной будет искорежен вместе с салоном.

О конструкции кузова

В конструкции каждого кузова, независимо от материала, присутствует силовой каркас, обеспечивающий жесткость. В алюминиевом кузове этот каркас состоит из литых элементов в комбинации с профилированными. Всё разработано так, чтобы при столкновении кузов деформировался поэтапно. И на каждом этапе ударная энергия поглощается максимально.

Возьмем для примера современные модели «Ауди». Если вы разгоните авто до скорости в 12 км/ч и направите его в бетонную стену, то при ударе деформируются лишь усилители бампера. Кузов останется целехоньким. При разгоне до 30 км/ч удар будет компенсирован внешней трубчатой секцией. И лишь при более высоких скоростях в «работу» начинает вступать силовой каркас кузова автомобиля.

Выводы после сравнения

Исходя из вышесказанного, можно сделать вывод – если вы решили купить автомобиль с алюминиевым кузовом, то вы автоматически повышаете собственную безопасность. Но, кроме более высокой стоимости самого авто, вам придется больше платить и за кузовной ремонт, когда таковой понадобится. Увы, тут пока действует известный закон сохранения энергии – где чего-то прибудет, то в другом месте обязательно столько же убудет. И наоборот.

https://itc.ua/articles/kuzov-avtomobilya-stal-alyuminiy-karbon-i-karton/

Кузов автомобиля: стальной или алюминиевый?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Как установить подсветку днища автомобиля своими руками

Подсветка днища автомобиля своими руками Один из самых интересных и ярких элементов визуального тюнинга автомобиля по праву можно считать подсветку днища. Этот небольшой нюанс сразу выделяет машину из потока и делает ее запоминающейся и привлекательной. А если еще сделать тюнинг выхнопных систем в DKstyle.ru — это будет просто пушка. Можно сказать, мечта многих автомобильных фанатов. […]

Полироли 3М — что это за полировальная паста, как убрать царапины с кузова автомобиля

Какой пастой полировать машину в домашних условиях — обзор полиролей и абразивных паст 3М Кузов любого современного автомобиля имеет многослойное покрытие, защищающее металл от внешних воздействий и обеспечивающее достойный внешний вид. Обычно это фосфатная обработка, грунт, базовая краска и лак, если машина окрашена по технологии «металлик». Хуже всего приходится последнему слою, который может обветриваться, покрываться […]

Яндекс.Метрика