Системы пуска двигателя внутреннего сгорания
Устройство автомобилей
Системы пуска двигателя
Система пуска обеспечивает первоначальное проворачивание коленчатого вала при пуске двигателя, поскольку сам двигатель в неподвижном состоянии не создает вращающего момента, и без внешнего источника энергии не запустится.
Для того, чтобы вдохнуть в двигатель жизнь, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения, после чего начинают протекать газообменные и термодинамические процессы в цилиндрах, а также функционировать основные системы, обеспечивающие работу двигателя – питания, зажигания, смазки. В цилиндры двигателя начинает поступать горючая смесь (у дизелей – чистый воздух), в нужный момент на свечи зажигания подается искрообразующий электрический импульс, либо впрыскивается порция топлива (у дизелей), а система смазки обеспечивает снижение сил трения при работе механизмов двигателя – двигатель запускается и начинает работать самостоятельно.
При первоначальном проворачивании коленчатого вала системе пуска необходимо преодолеть моменты сопротивления следующих составляющих:
- момент сил трения, возникающих между поверхностями сопряженных деталей двигателя и во вспомогательных механизмах, имеющих привод от коленчатого вала;
- момент инерционных сил, которые появляются в процессе разгона двигателя, создаваемых движущимися деталями. Основную долю момента инерционных сил составляет момент инерции маховика;
- момент сопротивления тепловых циклов горючей смеси, определяемый затратами энергии на расширение и сжатие заряда в цилиндрах двигателя. Эта составляющая зависит от величины компрессии в цилиндрах, степени сжатия и рабочего объема двигателя.
Суммарный момент сопротивления зависит, также, от типа и мощности двигателя, а также от его температуры и технического состояния. Так, с понижением температуры увеличивается вязкость масла смазывающей системы, что приводит к увеличению момента сил трения.
Система пуска должна обладать достаточной мощностью, чтобы преодолеть моменты сопротивления, заставив вращаться коленчатый вал с частотой, необходимой для запуска двигателя. За все время существования двигателей внутреннего сгорания изобретатели и конструкторы разработали и испробовали на практике разнообразные способы пуска двигателей. И в современных двигателях можно встретить разные по принципу действия и конструкции пусковые устройства. При этом используемый в двигателе способ пуска во многом определяется назначением и характером работы машины, а также условиями, в которых она эксплуатируется.
Классификация систем пуска двигателя
Поршневые двигатели внутреннего сгорания можно запустить, раскручивая коленчатый вал различными способами:
Мускульный пуск
Мускульный пуск осуществляется вручную при помощи пусковой рукоятки (или другого аналогичного устройства), либо проворачиванием вывешенного ведущего колеса, когда второе ведущее колесо заторможено (опирается на дорогу и не вращается благодаря дифференциалу).
В данном способе источником энергии для проворачивания коленчатого вала двигателя является мускульная сила человека.
Мускульный пуск применяется на современных автомобилях только в случае отказа штатной системы пуска. Он достаточно опасен с точки зрения травмирования человека, поэтому требует особой осторожности при применении. Запускать дизельный двигатель при помощи мускульного пуска значительно сложнее и опаснее, чем двигатель с принудительным воспламенением из-за высокой степени сжатия в цилиндрах.
В последние годы на легковых автомобилях производителями не предусматриваются штатные устройства для мускульного пуска двигателя.
Пуск методом буксировки
Методом буксировки двигатель можно запустить при помощи другого транспортного средства либо с использованием мускульной силы группы людей или животных (лошадей, мулов и т. п.).
Буксированием автомобиль разгоняется до некоторой скорости, после чего водитель включает передачу КПП (обычно 3-ю) и плавно включает сцепление, заставляя коленчатый вал крутиться.
Данный метод пуска двигателя не применим для автомобилей, оборудованных автоматической коробкой передач.
Пуск от электродвигателя
Пуск от электрического двигателя постоянного тока — стартера, использующего для своей работы энергию аккумуляторной батареи автомобиля. Этот способ наиболее удобен и практичен, поэтому применяется в подавляющем большинстве систем пуска современных автомобильных двигателей.
Стартер конструктивно объединяет электродвигатель постоянного тока, привод с обгонной муфтой, соединяющий стартер с венцом маховика, и электрическое реле включения электродвигателя.
Пуск с помощью вспомогательного двигателя — «пускача»
Пуск основного двигателя от вспомогательного двигателя внутреннего сгорания малой мощности, который запускается от других источников энергии, в том числе – вручную. Этот способ нередко применяется в тракторных двигателях, поскольку позволяет легко запустить двигатель большой мощности с высокой степенью сжатия, свойственной дизелям, мало зависит от степени заряда аккумуляторной батареи, поэтому применим в любых условиях, в том числе вдали от населенных пунктов.
В качестве пусковых двигателей обычно используют небольшие карбюраторные двигатели, называемые «пускачами».
Пневматический пуск
Пневматический пуск осуществляется с использованием энергии сжатого воздуха, который накапливается в специальных баллонах при работе основного двигателя. Этот способ пуска ДВС в автомобильном транспорте применения не нашел; его чаще используют для запуска судовых и тепловозных двигателей, а также дизелей тяжелой бронетанковой техники.
Инерционный пуск
Инерционный пуск с использованием энергии вращающегося маховика, накопившего энергию во время работы двигателя — может использоваться для запуска двигателя после кратковременной остановки. Впрочем, известны инерционные системы пуска, в которых тяжелый маховик первоначально раскручивался вручную, после чего его энергия использовалась для пуска двигателя и после длительной стоянки.
К инерционному пуску можно отнести пуск двигателя, заглохшего во время движения транспортного средства – включение какой-либо передачи КПП при плавном включении сцепления позволяет раскрутить коленчатый вал от вращающихся колес. Такой способ пуска двигателя иногда еще называют ротационным.
Непосредственный пуск
Непосредственный пуск (Direct Start) – перспективный способ пуска двигателя внутреннего сгорания без применения внешних источников механической энергии, предложенный известной фирмой Bosch.
Оригинальность этого способа пуска заключается в том, что с помощью бортового компьютера определяется, какой из цилиндров двигателя наиболее подходит для выполнения такта рабочего хода (поршень находится чуть за пределами верхней мертвой точки), после чего в него подается и воспламеняется небольшая порция горючей смеси – двигатель начинает работать.
По ряду причин этот способ можно использовать в двигателях с числом цилиндров не менее четырех.
Работы над воплощением этой идеи в настоящее время ведутся, и вполне возможно, электрическую систему пуска заменит более эффективный и удобный непосредственный пуск.
Пиротехнический пуск
Еще один редкий способ запуска двигателя. Пиротехнический пуск — способ с использованием пиротехнических веществ, например, пороха, не получивший применения на автомобилях. Этот способ технологически похож на пневматический пуск, и отличается тем, что не требует запаса сжатого воздуха — давление пуска обеспечивают пороховые газы, образующиеся при сгорании пиропатрона, который можно воспламенить электрической искрой или ударом обыкновенного молотка по капселю.
В настоящее время пиротехнический пуск используется на некоторых моделях снегоходов и моторных судовых шлюпок, поскольку удобен тем, что в некоторых условиях для пуска двигателя другие источники энергии недоступны.
Основное требование, предъявляемое к системам пуска двигателя – обеспечение достаточной частоты вращения коленчатого вала, для чего необходим крутящий момент определенной величины. При этом система пуска должна надежно функционировать в любых условиях эксплуатации двигателя внутреннего сгорания, и минимально расходовать запасы собственных источников энергии транспортного средства.
Вспомогательные устройства пуска двигателя
К системе пуска относятся и устройства, облегчающие пуск холодного двигателя, особенно при низких температурах окружающей среды. Такие устройства в момент пуска холодного двигателя позволяют улучшить искрообразование (в двигателях с принудительным воспламенением смеси), обеспечить подачу в цилиндры горючей смеси необходимого качества и количества, выполняют продувку цилиндров, а также предварительный подогрев горючей смеси, смазочного материала, охлаждающей жидкости и деталей основных механизмов двигателя.
Особенно затруднен пуск холодного двигателя, оборудованного газовой и дизельной системой питания в зимнее время. Здесь, наряду с перечисленными выше причинами, имеют место и специфические трудности пуска, обусловленные характеристиками используемого топлива и типом системы питания.
Так, газовое топливо при выходе из баллонов нуждается в подогреве (газообразное) или испарении (жидкий газ). Для того, чтобы подогреватель или испаритель начали функционировать, необходимо изначально запустить и прогреть двигатель, поскольку в подогревателе используются отработавшие газы, а в испарителе — горячая жидкость системы охлаждения. Очевидно, в холодном состоянии системы двигателя не могут обеспечить нормальный подогрев газа перед подачей его в редуктор и смеситель. Поэтому пуск двигателя в газобаллонных автомобилях обычно осуществляется на бензине, а после некоторого прогрева двигателя переключают систему питания на газообразное топливо.
Для дизелей дополнительной причиной затруднения пуска является холодный воздух. Поскольку дизельный двигатель использует для воспламенения горючей смеси сильное сжатие воздуха, то очевидно, что холодный воздух при одной и той же степени сжатия прогреется меньше, чем теплый воздух, и воспламенение смеси будет затруднено или даже невозможно. Кроме того, высокая степень сжатия в дизелях, характеризующаяся значительным компрессионным сопротивлением, создает дополнительное препятствие работе системы пуска (стартера или пускового двигателя), и при запуске трудно раскрутить коленчатый вал до нужной частоты.
Для устранения описанных причин затрудненного пуска дизелей применяются такие конструкторские решения, как предварительный подогрев воздуха во впускном трубопроводе с помощью специальных электронагревательных свечей, а также декомпрессоры — устройства, снижающие компрессию двигателя в момент раскручивания коленчатого вала перед пуском двигателя. Декомпрессоры обычно открывают клапана (впускной, выпускной или оба), что облегчает стартеру раскручивание коленчатого вала до нужной частоты, а после отключения декомпрессора двигатель запускается.
Кроме того, декомпрессор может быть использован для аварийной остановки двигателя в случае необходимости — снижение компрессии в цилиндрах исключает возгорание горючей смеси, и дизель глохнет.
Конструктивно декомпрессор представляет собой систему тяг и рычагов с ручным или электромагнитным приводом, воздействующих на штанги толкателей и открывающих клапаны ГРМ.
В условиях очень низких температур для облегчения пуска двигателя нередко применяют эфиросодержащие жидкости, впрыскиваемые в небольшом количестве во впускной тракт системы питания.
В холодное время года наиболее удобным и надежным средством облегчения пуска двигателей являются предпусковые подогреватели.
Система пуска двигателя
- Устройство системы пуска двигателя
- Работа системы пуска двигателя
- Диагностика системы пуска двигателя
Двигатель не может запуститься сам. Чтобы завести его нужно приложить внешние усилия и повернуть коленчатый вал. В этой статье мы рассмотрим систему пуска, которая запускает двигатель.
Устройство и работа системы пуска двигателя
На двигателе имеется маховик. Обод маховика снабжен зубьями и превращен в зубчатый венец. Установленная на электромоторе стартера приводная шестерня входит с ним в зацепление и вращает коленчатый вал , инициируя рабочий цикл двигателя. Ра c смотрим , как это происходит :
Работа системы пуска двигателя с редуктором
Существует три типа систем пуска :
- Система пуска двигателя с редуктором ;
- Система пуска двигателя с планетарным механизмом ;
- Система пуска обычного типа.
Рассмотрим конструкцию, работу и проверку системы пуска двигателя обычного типа.
1. Устройство системы пуска двигателя
В обычной системе пуска двигателя можно выделить три основных механизма :
- Электромотор – создает вращающий момент.
- Система привода – передает вращение на двигатель.
- Электромагнитный включатель – приводит ведущую шестерню стартера в зацепление с ободом маховика, а также дает электрический ток в электромотор.
Рассмотрим электромотор системы пуска, создающий вращающий момент. Корпус электромотора выполнен из стали и имеет внешний вид цилиндра. Внутри корпуса имеются обмотки возбуждения, намотанные вокруг сердечников, прикрепленных к корпусу. Эти обмотки выполнены из толстой токопроводящей проволоки, способной выдержать сильный электрический ток. Обмотки генерируют электромагнитное поле, способное вращать якорь стартера . Одним из элементов якоря является сердечник, с канавками вдоль которого располагаются витки обмоток якоря. Оба конца каждой обмотки подключены к коллектору. Вращающие моменты, создаваемые каждой из обмоток, складываются, чтобы можно было вращать якорь, точнее вал якоря. Если посмотреть на стартер со стороны коллектора, то на якоре видно щеткодержатель.
Якорь стартера состоит из вала, сердечника с пазами на которые устанавливается обмотка стартера. Для подробного изучения предлагаю воспользоваться схемой устройства якоря стартера. |
Втягивающее реле служит для подачи тока на мотор стартера и вводит бендикс в зацепление с маховиком для запуска двигателя. Устройство втягивающего реле, неисправности тягового реле. Как определить неисправности втягивающего реле? |
Рассмотрим, как устроен щеткодержатель : в щеткодержателе объединены 4 щетки, прижимаемые к коллектору. Две из четырех щеток находятся в изолированных оправках и соединены с обмотками якоря и далее через коллектор с обмотками возбуждения. Те и другие заземлены на корпус.
Схема системы пуска двигателя :
1. Коллектор; 2 –задняя крышка;3 – корпус статора;4 – тяговое реле;5 – якорь реле;6 – крышка со стороны привода;7 – рычаг;8 – кронштейн рычага;9 – уплотнительная прокладка;10 – планетарная шестерня;11 – шестерня привода;12 – вкладыш крышки;13 – ограничительное кольцо;14 – вал привода;15 – обгонная муфта;16 – поводковое кольцо;17 – опоры вала привода с вкладышем;18 – шестерня с внутренним зацеплением;19 — водило;20 – центральная шестерня;21 – опора вала якоря;22 – постоянный магнит;23 — якорь;24 — щеткодержатель;25 – щетка.
Система привода системы пуска двигателя
Этот механизм передает вращающий момент от электромотора к маховику. На валу якоря установлена шестерня привода. Действие электромагнитного включателя заставляет рычаг привода перевести шестерню привода в зацепление с зубчатым ободом маховика (в этом положение вращение передается на вал двигателя). Когда двигатель запущен, расцепляется оконная муфта, и теперь шестерня привода вертится в холостую. Позднее при включенном зажигании шестерня привода расцепляется с зубчатым ободом.
Теперь рассмотрим реальный механизм : оконная муфта передает вращение только в одном направлении и связана с шестерней привода. На муфте стартерного электромотора имеются винтовые шлицы. Винтовые шлицы имеются также на валу якоря. Шестерня привода способна скользить вдоль них вращаясь при этом. Винтовые шлицы обеспечивают плавное сцепление шестерни привода с зубчатым ободом. После сцепления зубчатого обода с ведущей шестерней раскручивается двигатель. Шестерня привода вертит зубчатый обод (при этом работает оконная муфта). Когда двигатель запущен, то двигатель вертит шестерню привода, при этом оконная муфта отключена. Шестерня привода вертится в холостую, чтобы не повредить электромотор.
2. Электромагнитный включатель
Электромагнитный включатель – заставляет приводной рычаг передвинуть шестерню привода и направляет ток в электромотор.
Схема работы электромагнитного включателя
В центре включателя находится плунжер. Плунжер выполняет две функции : перемещает приводной рычаг, соединенный с одним концом плунжера, а также включает главные контакты через контактную пластину, соединенную с его другим концом. Плунжер окружает втягивающая обмотка, которая подтягивает плунжер к главным контактам. Поверх втягивающей обмотки расположена удерживающая обмотка, которая удерживает плунжер у контактов. При повороте ключа зажигания электрический ток проходит по втягивающей, и удерживающей обмоткам, создавая магнитное поле. Это поле перемещает плунжер вправо. В результате контактная пластина замыкает главные контакты. Теперь клемма 30 замыкается с клеммой С, соединенной с мотором. В стартовый электромотор подается мощный ток, одновременно с этим, приводной рычаг приводит шестерню привода в зацепление и она начинает раскручивать двигатель.
Как устроен электромагнитный включатель?
Втягивающие и удерживающие обмотки закреплены на корпусе включателя. Контактная пластина расположена на торце плунжера напротив главного контакта. Втягивающие и удерживающие обмотки размещены вокруг плунжера, который поджимается возвратной пружиной. После запуска двигателя возвратная пружина перемещает шестерню привода в исходное положение.
Схема системы пуска двигателя
- Электромотор ;
- Система передачи ;
- Электромагнитный включатель ;
Электрическая схема системы пуска двигателя
Положительный полюс АКБ соединен с клеммой 30 и включателем зажигания. Клемма С соединена с обмотками возбуждения и обмоткой якоря, заземленными на корпус и далее соединенными с отрицательным полюсом АКБ. Все соединения выполнены мощным кабелем, который выдерживает большой ток. Клемма 50 соединена с положительным полюсом АКБ через включатель зажигания.
При повороте ключа зажигания ток сначала проходит через втягивающую и удерживающие обмотки, затем по обмоткам возбуждения и обмотке якоря, и наконец в землю. Поскольку сопротивление якоря и обмоток возбуждения очень низкое почти все напряжение АКБ падает на втягивающую и удерживающие обмотки. Возникающее в них поле перемещает плунжер вправо. Приводной рычаг, связанный с плунжером переводит муфту влево, одновременно поворачивая ее на винтовых шлицах якоря. Вместе с зацеплением привода с зубчатым венцом маховика временно замыкаются главные контакты. Когда главные контакты замкнуты контактной пластиной обмотки возбуждения и якоря питаются непосредственно от АКБ. После замыкания контактов выравниваются потенциалы клемм С и 50. Втягивающая обмотка уже не действует на плунжер. И он удерживается в прежнем положении только магнитным полем удерживающей обмотки. Когда после запуска двигателя ключ зажигания выключают главные контакты остаются замкнутыми. Но теперь ток от главных контактов во втягивающую обмотку поступает таким образом, что ее магнитное поле противоположно полю удерживающее обмотки. Оба магнитных поля взаимно уничтожаются. Теперь возвратная пружина переводит плунжер в исходное положение и размыкает главные контакты. Одновременно шестерня привода выходит из зацепления и возвращается в исходное положение.
Автомобильный справочник
для настоящих любителей техники
Система пуска двигателя
Система пуска двигателя, предназначена для запуска двигателя автомобиля. Она обеспечивает вращение двигателя со скоростью, при которой происходит его запуск. На современных автомобилях наибольшее распространение получила стартерная система пуска двигателя. Вот о том, из каких компонентов состоит система пуска двигателя автомобиля, мы и поговорим в этой статье.
Стартер автомобиля
Автомобильным двигателям внутреннего сгорания требуется помощь в запуске. Системы пуска двигателей состоят из следующих компонентов:
- Электродвигатель постоянного тока (стартер);
- Коммутационная аппаратура и блоки управления;
- Аккумуляторная батарея;
- Проводка.
Обороты стартера, гораздо большие, чем обороты коленчатого вала двигателя, согласуются с оборотами коленчатого вала двигателя через редуктор с подходящим передаточным соотношением (1/10 — 1/20), расположенный между шестерней стартера и зубчатым венцом маховика двигателя. Небольшой стартер способен развить необходимые обороты для надежного пуска двигателя (двигателям с искровым зажиганием требуется 60-100 мин -1 ; дизельным двигателям — 80-200 мин -1 ). Компрессия и декомпрессия в цилиндрах означает, что момент, необходимый для проворачивания коленчатого вала, значительно разнится, в результате чего также значительно колеблется мгновенная скорость вращения. На рис. «График оборотов коленчатого вала двигателя и пускового тока при холодном запуске двигателя» показан типичный график оборотов двигателя и тока стартера при холодном пуске.
Сам стартер должен удовлетворять следующим техническим требованиям:
- Готовность к работе в любое время;
- Достаточная пусковая мощность при разных температурах;
- Длительный срок службы;
- Надежность конструкции;
- Малая масса и компактные размеры;
- Отсутствие необходимости в обслуживании.
Конструктивные особенности стартера
Для создания необходимой топливно-воздушной смеси для двигателей с искровым зажиганием и температуры автоматическое воспламенения для дизельных двигателей стартер должен вращать коленвал ДВС с определенной минимальной скоростью. Частота вращения коленчатого вала двигателя сильно зависит от типа двигателя, его рабочего объема, числа цилиндров, степени сжатия, потерь на трение, дополнительных нагрузок, создаваемых при работе двигателя, системы управления подачей топлива, сорта используемого масла и окружающей температуры.
Вообще, пусковой момент и пусковая частота вращения при снижении температуры требуют постепенного увеличения пусковой мощности. Однако создаваемая пусковой аккумуляторной батареей мощность падает с понижением температуры, так как увеличивается ее внутреннее сопротивление. Эта противоречащая взаимосвязь требований к электрической нагрузке и доступной мощности означает, что наихудшим режимом работы для системы пуска ДВС является холодный пуск.
Из-за большого потребляемого стартером тока падение напряжения на питающих проводах значительно влияет на характеристики стартера.
Классификация систем пуска двигателя
Автоматические система пуска двигателя имеет номинальную мощность до 2,5 кВт при номинальном напряжении 12 В. Она может запускать двигатели с искровым зажиганием рабочим объемом до 7 л и дизельные двигатели рабочим объемом до 3 л.
Стартеры можно классифицировать по следующим критериям, согласно их техническим типам:
- Тип передачи мощности: стартер без редуктора или стартер с редуктором;
- Тип создания магнитного поля в электродвигателе: с постоянным магнитом или с электрическим возбуждением;
- Тип зацепления: скользящая шестерня, инерционный привод стартера (бендикс) или предварительное зацепление.
В современных автомобилях главным образом используются постоянно возбуждаемые стартеры с предварительным зацеплением с редуктором. Большая пусковая мощность сочетается в них с компактными размерами.
Конструкция и работа стартера
Стартер (рис. «Стартер с редуктором» ), по сути, состоит из электродвигателя, механизма привода и, начиная с мощности около 1 кВт, редуктора.
При запуске шестерня стартера входит в зацепление с маховиком посредством тягового реле. Стартер соединяется с шестерней привода либо напрямую, либо через редуктор, уменьшающий частоту вращения электродвигателя. Шестерня вращает коленчатый вал ДВС через зубчатый венец маховика до тех пор, пока ДВС не начнет устойчиво работать. После запуска двигателя он может быстро разогнаться до больших оборотов. После всего нескольких зажиганий двигатель ускоряется так мощно, что стартер уже не способен соответствовать его оборотам. ДВС «обгоняет» стартер и в результате может разогнать якорь до крайне высоких оборотов, если муфта свободного хода между шестерней и якорем не отменит нежелательную блокировку. Как только водитель отпустит ключ зажигания, тяговое реле обесточивается и буферная пружина выводит шестерню привода из зацепления с зубчатым венцом маховика с помощью спиральной канавки.
Электродвигатель стартера
Электродвигатель стартера представляет собой обычный электродвигатель постоянного тока. Преобладают электродвигатели с 6-ю полюсами. Доступные сегодня магнитные материалы позволили разработать стартеры, стойкие к демагнетизации и имеющие высокоэффективный магнитный поток, обеспечивающий большую пусковую мощность. Поскольку магнитное поле создается постоянным магнитом, а обратный эффект магнитного поля якоря очень мал, то возбуждение оказывается практически постоянным во всем диапазоне работы.
Редуктор стартера
Цель разработки стартера — свести к минимуму массу и размеры путем уменьшения объема электродвигателя и пр. Одновременно с тем, чтобы добиться одинаковой пусковой мощности, требуется более высокая скорость якоря — для компенсации существующего более низкого крутящего момента на якоре. Крутящий момент адаптируется к оборотам коленчатого вала ДВС путем повышения общего передаточного числа «коленчатый вал — якорь стартера». Это достигается с помощью дополнительного редуктора, встраиваемого в стартер. У стартеров легковых автомобилей он обычно имеет форму планетарного механизма. Он состоит из солнечной шестерни, монтируемой на валу якоря, водила с сателлитами и фиксированной коронной шестерни. Прямозубая планетарная шестерня передает крутящий момент якоря через приводной вал стартера на шестерню, свободную от поперечных сил. Здесь высокие обороты якоря (15000-25000 мин -1 ) понижаются в соотношении i ∼ 3 — 6.
Стандарт — пластмассовая коронная шестерня, изготавливаемая из полиамида, армированного волокном. В зависимости от требований может также использоваться стальная коронная шестерня с дополнительными амортизирующими элементами.
Виды стартерных приводов
Привод стартера обеспечивает зацепление шестерни стартера с зубчатым венцом маховика ДВС. Привод состоит из шестерни, муфты свободного хода, буферной пружины и тягового реле.
Тяговое реле стартера
Тяговое реле, используемое в стартере (рис. «Тяговое реле» ), состоит из корпуса, якоря, магнитного сердечника, носителя контактов (пластины с контактами, контактной пружины), втягивающей и удерживающей обмоток, возвратной пружины и крышки со встроенными контактами. Тяговое реле выполняет две функции:
- Выдвигает приводную шестерню над вильчатым рычагом для зацепления с зубчатым венцом маховика;
- Переключает электрическую цепь стартера путем подключения и отключения тока.
Чтобы якорь реле обеспечивал перемещение шестерни по всей длине хода, требуется ток порядка 30 А для создания необходимой магнитной силы. Когда якорь реле полностью втянут (воздушный зазор равен нулю), то для удержания якоря в крайнем положении требуется значительно меньшее магнитное возбуждение и, стало быть, меньший ток реле (около 8 А). Обмотка делится на втягивающую и удерживающую части, прежде всего для ограничения нагрева обмотки. Эти две части обмотки подключаются параллельно (рис. Цепь тягового реле» ), что означает сложение магнитного возбуждения двух обмоток. Начало обеих обмоток подключается к контакту 50 тягового реле. Конец втягивающей обмотки подключается через якорь стартера, а конец удерживающей — прямо к нулевому потенциалу.
Когда на контакт 50 тягового реле подается напряжение (зажигание включено), якорь втягивается в корпус магнитной силой, создаваемой втягивающей и удерживающей обмотками. Это движение толкает шестерню посредством рычага привода вперед, к маховику. Лишь когда якорь реле почти полностью втянется внутрь, закроется контактный мост и включится основной ток стартера. Это предотвращает вращение стартера до зацепления шестерни стартера с зубчатым венцом маховика. Поскольку теперь два конца втягивающей обмотки подключены к плюсу, ток течет только к удерживающей обмотке. Меньшей магнитной силы удерживающей обмотки достаточно для надежного удержания якоря реле до размыкания выключателя зажигания.
Стартер с приводом предварительного зацепления
Стартер с приводом предварительного зацепления стал мировым стандартом для легковых автомобилей, так как гарантирует надежную работу во всем рабочем диапазоне. У стартеров с приводом предварительного зацепления ход зацепления составляется из фазы рычажного хода и фазы спирального хода. Якорь тягового реле толкает шестерню стартера к маховику посредством рычага привода (рычажный ход). Поскольку ток стартера еще не включен, шестерня стартера еще не вращается. Если зуб шестерни попадает прямо во впадину между зубьями на маховике (положение «зуб-впадина») при сцеплении шестерни с маховиком, это сцепление происходит настолько быстро, насколько позволяет ход реле.
Если зуб шестерни стартера попадает на зуб на маховике (положение «зуб-зуб») при сцеплении шестерни с маховиком — это происходит примерно в 80 % случаев — якорь реле через рычаг привода растягивает буферную пружину, так как шестерня не может двигаться дальше в осевом направлении.
По достижении крайнего положения, задаваемого тяговым реле, контактный мост якоря реле открывает главный ток стартера, и якорь стартера начинает вращаться. В случае «зуб — впадина» вращающийся электродвигатель полностью вводит шестерню стартера в зацепление с зубчатым венцом маховика посредством спиральной канавки (спиральный ход). Создающая спиральный ход спиральная канавка также обеспечивает передачу шестерней полного крутящего момента электродвигателя только по достижении упора (в конце спирального хода). Это предотвращает механическую перегрузку зубьев шестерни и маховика.
Из положения «зуб-зуб» электродвигатель поворачивает шестерню перед маховиком, пока зуб шестерни не найдет впадину на зубчатом венце маховика. Затем предварительно сжатая сцепляющая пружина толкает вперед шестерню и муфту свободного хода. Вращающийся электродвигатель полностью вдвигает шестерню в зубчатый венец маховика через спиральную канавку.
Когда обмотка реле обесточивается, возвратная пружина толкает якорь реле, а также шестерню и муфту свободного хода через рычаг привода — обратно в исходное положение. Крутящий момент, вызванный трением муфты свободного хода, создает продольную силу вместе со спиральной канавкой, которая помогает выводу шестерни из зацепления.
Буферная пружина значительно уменьшает износ зубьев, ограничивая осевое усилие и, таким образом, продлевает срок службы и повышает надежность системы.
Стартеры со скользящей шестерней
Стартеры со скользящей шестерней используются для запуска крупных двигателей. Поскольку требования к сроку службы обычно значительно выше у грузовых автомобилей, процесс ввода в зацепление обычно происходит в два этапа, чтобы защитить шестерню и зубчатый венец маховика от разрушения. На первом этапе начинается ввод зубьев шестерни стартера в зубчатый венец маховика, а на втором — плавно завершается. Шестерня может поворачиваться механическими или электрическими средствами для устранения положений «зуб-зуб».
Стартеры с инерционным приводом
Инерционный привод — это простейший принцип зацепления, используемый прежде всего для двигателей небольшой мощности (например, у газонокосилок).
При включении стартера ненагруженный якорь начинает свободно вращаться. При этом шестерня стартера и муфта свободного хода еще не вращаются из-за своей инерции и выталкиваются вперед по спиральной канавке. Когда шестерня стартера входит в зацепление с зубчатым венцом маховика, крутящий момент от якоря электродвигателя стартера начинает передаваться на двигатель через муфту свободного хода, шестерню стартера и зубчатый венец маховика. Затем стартер начинает вращать коленчатый вал ДВС.
Когда обороты ДВС обгоняют обороты стартера, муфта свободного хода разъединяет нежелательное соединение. Крутящий момент, вызванный трением муфты свободного хода, создает продольную силу вместе со спиральной канавкой, которая выводит шестерню стартера из зацепления с зубчатым венцом маховика. Выполнению этой операции помогает пружина.
Единственная задача реле электродвигателя у стартеров с муфтой свободного хода — включение пускового тока. Таким образом, ее не нужно монтировать на стартер — ее можно установить в любом положении в автомобиле или в системе привода. Отсутствие буферной пружины значительно увеличивает износ зубьев и, таким образом, уменьшает срок службы и надежность системы запуска.
Муфта свободного хода
В стартере любой конструкции крутящий момент передается через обгонную муфту (муфту свободного хода). Эта муфта устанавливается между стартером и шестерней. Ее задача — вращать шестерню стартера, когда он проворачивает коленчатый вал ДВС, и затем разорвать соединение между шестерней и валом привода, как только обороты ДВС превысят обороты стартера.
В описанных здесь конструкциях стартеров обычно используются роликовые муфты свободного хода. Роликовая муфта свободного хода состоит из приводного механизма с оболочкой муфты, канавки для роликов, роликов, пружин, шестерни, вала шестерни со спиральной канавкой и торцевой заглушки. Роликовая муфта свободного хода толкает отдельные подпружиненные ролики в клинообразные карманы (рис. «Муфта роликового типа» ).
Когда приводится вал якоря, цилиндрические ролики зажимаются в сужающейся секции канавки и создают неположительное соединение между внутренним валом и приводным механизмом.
Когда обороты ДВС обгоняют обороты стартера, под воздействием пружин сжатия ролики освобождаются и перемещаются в расширяющуюся секцию канавки. Зажимающая неположительная сила исчезает практически полностью. Подпружиненные ролики создают фрикционный момент.
Включение стартера
При традиционном запуске водитель подключает напряжение аккумуляторной батареи (ключ зажигания в положении запуска) к реле стартера. Ток реле (около 30 А у легковых автомобилей, около 70 А у грузовых) создает в реле определенную мощность. Она толкает шестерню стартера к зубчатому венцу маховика и активирует первичный ток стартера (200-1000 А у легковых автомобилей, около 2000 А у грузовых).
Стартер выключается при размыкании выключателя зажигания, прерывающем подачу напряжения на реле стартера.
Автоматическая система пуска двигателя
Высокие требования к двигателям в плане комфорта, безопасности, качества и акустики привели к распространению автоматических систем пуска двигателей. Автоматическая система пуска двигателя отличается от традиционной дополнительными компонентами (рис. «Автоматическая система пуска двигателя» ). Это одно или несколько балластных реле, а также аппаратные и программные компоненты (например, ЭБУ двигателя) для управления запуском.
Водителю больше не нужно непосредственно контролировать ток реле стартера; ключ зажигания используется для отправки сигнала на блок управления, который затем выполняет серию проверок перед началом запуска. Проверки могут быть разными, например:
- Проверка полномочий водителя на запуск двигателя (противоугонная);
- Проверка выключенного состояния ДВС (предотвращает зацепление шестерни стартера с зубчатым венцом вращающегося маховика);
- Проверка достаточности заряда аккумуляторной батареи (относительно температуры двигателя) для запуска двигателя;
- У автоматических коробок передач — проверка нейтрального положения, у механических коробок передач — проверка состояния муфты сцепления (разомкнута ли муфта).
После успешного выполнения проверки блок управления инициирует запуск. При запуске система сравнивает обороты ДВС с оборотами устойчивой работы ДВС (которые могут также зависеть от температуры ДВС). Как только двигатель набирает устойчивые обороты, ЭБУ выключает стартер. Это всегда позволяет максимально сократить время запуска, уменьшить уровень шума и износ стартера.
Этот процесс можно также взять за основу для реализации функции «пуск-стоп», когда ДВС выключается при остановке автомобиля — например, на светофоре, и автоматически заводится, когда это необходимо. В результате значительно экономится топливо, особенно в городском цикле.
В то же время ДВС также необходимо оптимизировать для получения быстрой пусковой реакции. Нужен стартер с характеристиками, продлевающими срок службы, гарантирующий более быстрый и менее шумный запуск. Для уменьшения износа и уровня шума необходимо оптимизировать конструкцию шестерни и геометрию зубчатого венца маховика.
Для функции «пуск-стоп» необходима система управления более высокого уровня, система управления электроэнергией с определением заряда аккумуляторной батареи. Могут также потребоваться меры по стабилизации электрической системы автомобиля в фазе запуска для предотвращения неприемлемого падения напряжения. Поэтому система управления и система запуска должны быть согласованы. Уровень и длительность падения напряжения должны быть ограничены, а система управления должна оставаться работоспособной даже при значительном падении напряжения питания.
Источник Источник http://k-a-t.ru/mdk.01.01_elektro/27-pusk_1/index.shtml
Источник http://www.autoezda.com/electr/%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0-%D0%BF%D1%83%D1%81%D0%BA%D0%B0-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F
Источник Источник Источник Источник http://press.ocenin.ru/sistema-puska-dvigatelya/