Двигатель воздушного охлаждения: особенности, принцип работы
Двигатель воздушного охлаждения
Чтобы уберечь двигатель от перегрева, тем самым увеличивая срок безотказной эксплуатации автомобиля, необходима действенная система охлаждения. Предстоящее исследование посвящено «воздушникам», их устройству, а также достоинствам и недостаткам. Изучив предлагаемую информацию, можно сравнить принудительное охлаждение воздухом с жидкостным, чтобы сделать правильный выбор системы.
Чем привлекателен двигатель воздушного охлаждения
В функционирующем моторе температура цилиндров способна достигать 2000 градусов, тогда как оптимально допустимым считается режим 80-90 градусов. Разумеется, в таких экстремальных условиях ни одна деталь не прослужит долго. Для сохранности рабочих фрагментов автомашины двигатель нуждается в достаточно надежной системе охлаждения. Подобные конструкции имеют две разновидности:
- система, использующая воздушное охлаждение. Здесь в качестве защиты работающего агрегата от перегрева выступает воздух;
- жидкостное охлаждение ранее, в былые времена осуществлялось обычной водой. Технический прогресс отразился на создании специального вещества, названного антифризом. Также для снижения температуры мотора применяется тосол.
В настоящей публикации подробно рассматривается первая разновидность систем, оберегающих функционирующий двигатель от чрезмерного перегрева. Это позволит несведущему автолюбителю ознакомиться с устройством и принципом работы сложного технологического механизма.
Функции охлаждающих систем
Следует отметить, что поддержание оптимального температурного режима в двигателе автомобиля требует защиты не только от непомерного перегревания, но также от промерзания. Переохлаждение агрегата способно вызвать конденсацию топливно-воздушной смеси, вызванную соприкосновением горючего с прохладной поверхностью цилиндров.
Попадая в картер силовой установки, она приводит к разжижению смазочного вещества, что отражается потерей большинства его полезных характеристик.
Смешивание топлива с маслом вызывает досадное падение мощности мотора. Функционально важные детали двигателя быстрее изнашиваются. Также отрицательным моментом является загустевание масла в переохлажденном агрегате. Ухудшение своевременной подачи смазочного вещества в цилиндры приводит к непомерной растрате горючего, функциональная способность двигателя существенно понижается.
Помимо выполнения основной функции, системы охлаждения дополнительно обеспечивают:
- понижение температуры отработанных газов в системе рециркуляции;
- вентиляцию и кондиционирование воздуха в салоне автомобиля. Также они отвечают за отопление;
- своевременное охлаждение моторного масла;
- поддержание оптимального температурного баланса в турбокомпрессорных агрегатах;
- охлаждение рабочей жидкости, заполняющей коробку-автомат.
Назначение и принцип действия системы воздушного охлаждения
Установлено, что перегревающийся двигатель вызывает непомерный расход топлива, также тратится большое количество машинного масла. Важные для нормального функционирования автомобиля детали быстро выходят из строя вследствие скорого износа. К тому же, нарушение температурного режима может привести к необоснованной потере мотором необходимой мощности.
С помощью воздушной системы охлаждения в двигателе поддерживается оптимальная температура. Также ее предназначением является контроль подогрева воздуха в салоне автомобиля. Она следит за своевременным охлаждением смазочных материалов, снижает температуру рабочей жидкости, заполняющей коробку-автомат, а порой поддерживает оптимальный режим в дроссельном узле и приемном коллекторе.
Принцип действия системы заключается в отведении тепла потоком воздуха от чрезмерно нагревающихся деталей работающего двигателя. Таким путем охлаждаются цилиндры, головки блока и масляного радиатора.
Воздушный поток к двигателю нагнетается принудительно алюминиевыми лопастями вентилятора, защищенного специальной сеткой от нежелательного попадания случайных предметов, способных повредить агрегат. Дефлекторы равномерно распределяют воздух, поступающий через ребра охлаждения, между всеми деталями функционирующего мотора.
Конструкция вентилятора
Следует отметить, что принудительное воздушное охлаждение невозможно без специального устройства. Вентилятор, являющийся необходимым звеном рассматриваемой системы, состоит из следующих деталей:
- направляющего диффузора, оснащенного по окружности стационарными, радиально расположенными лопастями переменного сечения, влияющими на равномерное распределение воздушного потока;
- ротора, имеющего восемь особых лопаток, размещенных по радиусу;
- алюминиевых лопастей, нагнетающих поток воздуха в требуемом направлении;
- кожуха, предотвращающего попадание тепла из внешнего пространства;
- защитной сетки, предохраняющей механизм от случайного проникновения посторонних предметов внутрь устройства.
Лопастями диффузора изменяется направление воздушного потока, и он устремляется в сторону, противоположную вращению ротора. Это способствует увеличению атмосферного давления, вызывая лучшее охлаждение двигателя.
Преимущества и недостатки системы охлаждения двигателя воздухом
Отдельно следует заметить, что иногда для обеспечения нормального температурного режима вполне достаточно естественной циркуляции атмосферных потоков. Внешняя поверхность цилиндров мопедов, мотоциклов, поршневых и прочих простейших двигателей оснащается специальными ребрами, способствующими отдаче тепла во внешнюю среду.
Сложная конструкция автомобильного мотора требует принудительного охлаждения. Воздушному потоку необходимо придать определенное направление. Для этой цели используются вентиляторы.
Двигатели с воздушным охлаждением обладают следующими достоинствами:
- чрезвычайной простотой конструкции, значительно упрощающей процесс ремонта или замены пришедших в непригодность деталей;
- сравнительно небольшим весом;
- основательной надежностью;
- приемлемой стоимостью;
- хорошими характеристиками холодного запуска мотора.
Однако, прежде чем выбрать автомобиль, имеющий двигатель воздушного охлаждения, следует ознакомиться и с недостатками рассматриваемых систем. Они характеризуются:
- непомерным шумом, который создается работающим вентилятором;
- увеличением размера двигателя в связи с необходимостью дополнительного пространства для размещения обдувающего устройства;
- неравномерностью направленности воздушных потоков, что определяет возможность локального перегрева;
- чрезмерной чувствительностью к качеству горючего, смазочных материалов, а также повышенными требованиями к состоянию запчастей.
Тем не менее, воздушное охлаждение приобрело свою нишу в автомобилестроении. Такими моторами оснащают грузовики, сельскохозяйственную технику и машины с дизельными ДВС.
Распространенные мифы о «воздушниках», истина или вымысел
К сожалению, недостатки «Запорожца» окончательно подорвали доверие отечественных автолюбителей к воздушной системе охлаждения двигателя. Ее обвиняли в сильном нагревании, недостаточной мощности и быстром выходе из строя. В то время, как немецкий «Жук», оснащенный подобной системой, пользуется неизменной популярностью у потребителей, радуя производителя постоянным повышенным спросом.
Равняясь на характеристики германского автомобиля, подробно исследуем некоторые довольно распространенные легенды, преследующие двигатели, охлаждаемые воздухом.
Утверждение 1. «Воздушник» проигрывает жидкостной системе за счет сильного нагревания
Отнюдь не является непреложной истиной. В действительности температурные особенности, наоборот, можно считать достоинством двигателя, охлаждаемого воздушным потоком. Разумеется, пониженная теплопроводность не позволяет воздуху отбирать тепло с достаточной скоростью, обеспечиваемой водой или антифризом.
Однако, отличие температур на поверхности цилиндров и во внешней среде значительно больше разницы между стенками и жидкостью, перемещающейся внутри системы. Поэтому, погодные условия в меньшей степени влияют на тепловой режим «воздушника». Возможность перегрева мотора с жидкостным охлаждением в жару намного выше.
Утверждение 2. Большие габариты
Также весьма спорно. При сравнении размеров двух двигателей, имеющих равные диаметры цилиндров и одинаковый ход поршня, но оснащенные разными системами охлаждения, преимущество зачастую оказывается на стороне «воздушника».
Несмотря на довольно внушительный вид вентилятора с дефлектором и достаточно громоздкие кожухи, окружающие цилиндры с головками, его параметры оказываются несколько компактнее, чем у жидкостного агрегата.
К тому же, «водянка» занимает значительно большее пространство за счет дополнительного оборудования, выносимого за пределы двигателя. На кузове находится весьма громоздкий радиатор, оснащенный вентилятором. Также большое количество всевозможных шлангов отнюдь не добавляют компактности.
Утверждение 3. Воздушные системы проигрывают жидкостным в надежности
Не соответствует действительности. Статистические исследования утверждают, что в одном из пяти случаев отказа двигателя вина ложится на жидкостное охлаждение. Причиной являются отказоопасные детали наподобие термостата, радиатора, помпы и пр.
Простота конструкции обеспечивает надежность вентилятора с дефлектором, объясняемую низкой вероятностью поломки. Кроме того, привлекательным моментом, свидетельствующим в пользу «воздушника», считается снижение расходов на обслуживание системы.
Утверждение 4. Воздушное охлаждение слишком громкое
К сожалению, является истинным. Конструктивными особенностями воздушной системы не предусмотрены эффективные звукопоглощающие устройства, которыми располагает жидкостной двигатель. Кроме того, ребра цилиндров и головок «воздушника» иногда, наоборот, усиливают шумы, производимые функционирующим мотором.
Конструкторы предусмотрели звукоизоляцию жидкостной системы, осуществляемую благодаря удвоенным стенкам рубашки охлаждения, внутри которой циркулирует антифриз или вода. Поэтому на этой позиции «воздушник» действительно оказался в проигрыше.
Утверждение 5. Воздушные двигатели быстрее изнашиваются
Является правильным применительно к устаревшим системам. Вентилятор просто нагнетал потоки воздуха на ребра цилиндров, не обеспечивая достаточной равномерности обдува. Современные двигатели характеризуются рациональным распределением тепла.
К тому же, более высокая температура на стенках цилиндров «воздушников» способствует сокращению потерь, вызываемых трением колец о цилиндры благодаря лучшему разжижению смазочных материалов. Это объясняет меньший износ деталей. Масло меньше подвергается окислению, что замедляет его старение, позволяя экономить на частой замене.
Утверждение 6. Недостаточная мощность
Не совсем верно. Причиной подобного обвинения является ухудшение весового наполнения цилиндров рабочей жидкостью, вызывающее непродолжительное падение мощности двигателя. Это происходит благодаря повышению температуры цилиндров и головок с увеличением нагрузки, что ведет к нежелательному нагреванию воздуха внутри системы.
Однако, при большем количестве оборотов разница в коэффициенте наполнения у воздушных двигателей и жидкостных моторов становится меньше 3,5%, установленных исследованиями, практически устремляясь к нулю. Поэтому, бороться с потерей отдачи можно, увеличивая обороты.
Заключение
Итак, проведенное исследование доказало, что охлаждение воздухом ничуть не хуже жидкостного, а по некоторым параметрам и вовсе превосходит его. Не пора ли производителям задуматься о возобновлении выпуска автомобилей с воздушными системами? Спрос потребителей будет расти, несмотря на печальный опыт злосчастного «Запорожца».
Шесть мифов о «воздушниках»: чем воздушное охлаждение круче жидкостного
На первый взгляд – взгляд потребителя, владельца семейной легковушки или целого коммерческого автопредприятия – преимущества двигателей с воздушным охлаждением лежат на поверхности:
- «воздушник» конструктивно проще мотора с жидкостным охлаждением
- он надежнее;
- он дешевле в эксплуатации.
О минусах воздушного охлаждения все тоже как будто наслышаны, и напомнить о них здесь стоило бы лишь для соблюдения баланса аргументов. Но на самом деле есть только один значимый для потребителя недостаток мотора с воздушным охлаждением:
- «воздушник» более шумный.
Все остальные минусы или давно потеряли актуальность, или всегда были досужими сказками. Так что есть повод поговорить об этих незаслуженно подзабытых агрегатах подробнее.
Из истории «воздуха»
Двигатель Porsche 911 Carrera 4
Да, было время, когда автомобильные моторы с воздушным охлаждением проигрывали собратьям с охлаждением жидкостным (тогда говорили – водяным, поскольку антифризы были понятием чисто теоретическим). Двигатели-«воздушники» получались менее мощными, перегревались летом и не прогревались зимой. Из-за температурных проблем ресурс такого двигателя был меньше, часто случались отказы. Но все эти вопросы были решены к 1950-м годам, когда воспрянувшая после Второй мировой Европа начала пересаживаться с велосипедов на компактные автомобильчики. Дешевые и неприхотливые «воздушники» начали массово применять не только на VW Beetle, но и на Citroen 2CV, Fiat 500, NSU Prinz и прочих автомобилях. И это мы еще не говорим о целой плеяде серийных заднемоторных спорткаров Porsche, 4-, 6- и 8-цилиндровые моторы которых вплоть до 1998 года охлаждались воздухом!
Двигатель ЗАЗ-968А «Запорожец »
В то время как немецкий «Жук» с его обдуваемым воздухом оппозитником во всем мире мигом стал образцом простоты и безотказности, в нашей стране сложилось устойчивое и по сей день не искорененное предубеждение против моторов воздушного охлаждения. Дескать, они и греются безбожно, и ломаются через день, да и силенок у них маловато. Виноват во всем бедолага «Запорожец» , которому пришлось отдуваться за честь всех «воздушников» перед лицом целого СССР. Вместе с сомнительным качеством сборки ЗАЗикам досталась мизерная по масштабам СССР сервисная сеть. Сам по себе мелитопольский силовой агрегат МеМЗ был неплох, но обслуживаемый в кустарных условиях, заправляемый «автолом» и ремонтируемый «на коленке», он в самом деле не был примером надежности. Поэтому прежде чем продолжить повествование, хочу попросить читателя ассоциировать понятие «воздушник» не с «Запором», а с «Жуком» или хотя бы с «Ситроен де шво». Так будет честнее.
Двигатель «Запорожец » МеМЗ-968
1. Он греется – неправда
На самом деле, температурные особенности моторов-«воздушников» можно отнести не к минусам, а к плюсам. Да, из-за меньшей теплоемкости и теплопроводности воздух не может так быстро отобрать тепло, как вода или антифриз. Но с другой стороны разница температур между стенками цилиндров и забортным воздухом больше, чем между теми же стенками и циркулирующей в системе охлаждающей жидкостью. Поэтому тепловой режим «воздушника» меньше зависит от погоды – то есть вероятность перегрева двигателя-«водянки» даже с самым большим радиатором в жару намного выше.
Схемы систем воздушного охлаждения
Еще одно очень важное преимущество «воздушника» – в три-четыре раза более быстрый прогрев после холодного пуска. Отсюда – и экономия топлива, и продление ресурса, и лучшая экология, и, наконец, удобство для водителя. Только у самых сложных «жидкостных» моторов образца 2010-х годов, имеющих три контура системы охлаждения, получается достигнуть подобных показателей прогрева.
2. Он громоздкий – неправда
Внешне «воздушник» может казаться более массивным, поскольку его цилиндры и головки со всех сторон окружены кожухами-воздуховодами, да и вентилятор обдува с дефлектором обычно выглядит более чем внушительно. Но предметное сравнение габаритов двух моторов с одинаковыми диаметром цилиндров и ходом поршня, но разными системами охлаждения, говорит о том, что габариты если и отличаются, то как раз в пользу «воздушника» – зачастую он оказывается чуть компактнее. Но главное даже не это.
Двигатель VW Beetle
Что касается размеров, справедливо будет принимать во внимание габариты не одного только двигателя, но и тех его неотъемлемых компонентов, которые крепятся отдельно, на кузове. Вот тут и проявляется неопровержимое преимущество «воздушника»: говоря современным языком, он выполнен в форм-факторе «моноблок», в то время как «водянка» имеет вынесенный на кузов громоздкий радиатор с вентилятором и системой шлангов. Которые, естественно, компактности силовому агрегату не добавляют.
3. Он ненадежный – неправда
На самом деле надежность двигателя с воздушным охлаждением существенно выше, ведь по статистике система жидкостного охлаждения служит причиной 20% всех отказов двигателя. А у «воздушника» как раз отсутствуют компоненты, обладающие низкой отказоустойчивостью: радиатор, термостат, помпа, трубопроводы, сальники и прочие уплотнения. Вентилятор и дефлекторы для обдува цилиндров воздухом устроены существенно проще, поэтому вероятность их отказа мизерна. Кстати, по этой же причине затраты на обслуживание «воздушников» также ниже.
Двигатель Porsche 911
4. Он шумный – правда
Что есть, то есть – шумит. И поделать с этим ничего нельзя. Точнее, идеи есть, но воплотить все их очень сложно. Беда в том, что у «воздушника» нет такой эффективной шумоизоляции, как двойные стенки рубашки охлаждения, заполненной водой или антифризом. И более того, все шумы мотора (механические, газообмена, горения) порой усиливаются ребрами цилиндров и головок. Поэтому конструкторы борются в первую очередь с источниками шумов, повышая жесткость деталей и применяя подпружиненные разрезные шестерни приводов, гидрокомпенсаторы клапанов, материалы с точно подобранным коэффициентом температурного расширения. Аэродинамические шумы вентилятора можно значительно уменьшить, но это дело нелегкое – нужны серьезные усилия конструкторов и технологов.
Двигатель Fiat 500
5. Малый ресурс – неправда
В первые 50 лет автомобильной эры к воздушному охлаждению конструкторы относились легкомысленно – дует мощный вентилятор на оребренные цилиндры, да и ладно. Но такое охлаждение часто было неравномерным, с застойными зонами и местными перегревами. Цилиндры деформировались, нарушались установленные зазоры цилиндропоршневой группы, масло коксовалось и выгорало. В результате детали изнашивались более интенсивно, чем у моторов с водяной «рубашкой», которая более равномерно распределяла выделяемое через стенки цилиндров тепло и отбирала его. Но организовать ровный обдув воздухом всех горячих зон двигателя оказалось не так уж сложно, и со временем двигатели-«воздушники» получили рациональное распределение тепла.
Еще один нюанс, уже из области высоких материй: при воздушном охлаждении проще организовать более высокую температуру стенок цилиндров (независимо от их головок). «Лишние» 15-20 °C снижают потери на трение колец о цилиндры (масло-то на стенках более жидкое!), а также уменьшают их износ (в том числе и коррозионный) и замедляют старение масла за счет его меньшего окисления. Выше уже было сказано о том, что мотор с воздушным охлаждением работает в холодном состоянии в несколько раз меньшее время, чем мотор с водяным – а значит, и время интенсивного износа трущихся пар намного меньше.
Двигатель Porsche 911 GT2
6. Он хилый – неправда
Причина для подобного обвинения есть, но суть проблемы такова, что ею можно пренебречь. Дело в том, что при увеличении нагрузки температура охлаждаемых воздухом цилиндров и их головок быстро повышается, а значит, повышается температура воздуха, поступающего в цилиндры. Отсюда – худшее весовое наполнение цилиндров рабочей смесью и кратковременное падение отдачи двигателя. Но исследования ученых-моторостроителей показывают, что разница коэффициента наполнения цилиндров у «воздушников» и «водянок» не превышает 3,5%. И это при 2 000 об/мин, а с ростом оборотов разница вообще стремится к нулю. Таким образом, теоретически существующую особенность эффективного наполнения цилиндров конструкторы решают за счет повышения рабочих оборотов двигателя. И, разумеется, данный вопрос вообще не касается наддувных двигателей воздушного охлаждения.
Так почему же?
Каждый, кто дочитал эту не самую простую статью до конца, вслух или мысленно уже задался вопросом: и по какой же причине от такого замечательного типа охлаждения отказались даже спецы из Porsche, которые одних только 911-х с «воздушниками» выпустили более 400 000 экземпляров? Причин много, и мы их рассмотрим в следующей статье. Но сразу скажем: мотор не виноват. Не все ведь в этом мире зависит от технарей и техники.
Читайте также:
Для комментирования вам необходимо авторизоваться
ТАТРА, МАГИРУС — грузовики с воздушниками освоили весь север
во всем виноваты пройдохи-маркетологи и упыри-экологи. двухтактники тоже они погубили.
интересная статья. автор продолжай. ждем вторую часть
Согласен с комментарием Бориса..противоречия налицо
почти каждый пункт неправдавоздушники сходят со сцены потому что равномерный прогрев обеспечить невозможно, как раз из-за разной температуры воздуха и малой его теплоемкости, а вода-естественный стабилизатор температуры. А раз нет термостабильности то тут хуже условия работы поршневой группы, закоксовка колец при перегревах, недогрев зимой, непостоянство зазоров(причем вверху уже прихватывает, а внизу — зазор великоват). перегрев ГБЦ на воздушниках типичная проблема — охладить сам цилиндр на порядок проще, отсюда жесткие условия работы распредвала, клапанов да и мотор ограничен по форсированию. К тому же поставить 4 клапана на цилиндр целая проблема. Порше не зря отказалась от воздушников с масло-воздушным охлаждением.Масса воздушников больше, банально потому, что все зависит от площади металлической рубашки охлаждения, и она тяжелее, чем пустотелые радиаторы и блок.Маслу естественно в таком моторе тяжелее, экологичность ниже. Даже мотоциклы из-за этого переходят на комбосистемы, когда в системе охлаждения есть вода, она стабилизирует температуру, снаружи блока есть оребрение и в обычном режиме работы нагрузка на радиатор пониженная, что позволяет обойтись очень компактной системой. Но машины работают на малой скорости и для них такой вариант не годится.
Дедовский запорожец было слышно за несколько километров от дома )) Возможно из за того что город был не шумный ) А так машина отличная , не подводила )
Это из-за прогоревшего глушителя. Выпускной тракт короткий, охлаждается плохо. Отсюда частые выходы из строя глушителей. Владельцы запорожцев, обычно, забивали на замену и ездили так — всё равно новый глушитель живёт недолго.
Статья привлекательна тем, что любой сундук при её прочтении может почувствовать себя специалистом, равным или даже превосходящим автора. Поддакнуть, поспорить. Что по мне, так, поскольку я сундук без претензий, то , не мудрствуя лукаво, доверяюсь решению инженеров и специалистов мирового автопрома. И поэтому в подобных статьях читаю лишь первый и последний абзацы. Чего и вам желаю. Хотя, впрочем, почему бы не побалагурить. Была бы тема близка. Но при этом стоит представляться, чтобы читатель поверил что ты действительно не глупее инженеров и управленцев профессиональных.
Автор материала попросил передать ответы на комментарии. Ответы ниже.Borys Rabinovych 07 февраля в 15.41Какое-то противоречие. При повышенной температуре масло меньше окисляется. Неверно. При более жидком масле уменьшается трение. Это с каких же дел? При жидком масле нарушается масляная пленка и возникает полусухое трение. Последствия очевидны.Автор: — Borys, спасибо за внимание к материалу и комментарий! Чтобы развеять ваши сомнения, позвольте детализировать приведенные мной выкладки из теории ДВС. 1. При более высокой температуре в цилиндре на его стенках не образовывается конденсат из продуктов сгорания, а это снижает коррозионный износ цилиндра. Также совместно с конденсатом в цилиндре при горении могут образовываться ангидриды, которые служат причиной окисления масла и усиливают коррозионный износ. 2. При более жидком масле снижаются потери на трение, поскольку масло становится менее вязким (помните ведь: современные энергосберегающие масла – это синтетика малой вязкости?) Масляная пленка нарушается при перегреве, ненормальном температурном режиме, мы же говорим о нормальном. Борис Игнашин 08 февраля в 02.05 ответить 0 почти каждый пункт неправдавоздушники сходят со сцены потому что равномерный прогрев обеспечить невозможно, как раз из-за разной температуры воздуха и малой его теплоемкости, а вода-естественный стабилизатор температуры. А раз нет термостабильности то тут хуже условия работы поршневой группы, закоксовка колец при перегревах, недогрев зимой, непостоянство зазоров(причем вверху уже прихватывает, а внизу — зазор великоват). перегрев ГБЦ на воздушниках типичная проблема — охладить сам цилиндр на порядок проще, отсюда жесткие условия работы распредвала, клапанов да и мотор ограничен по форсированию. К тому же поставить 4 клапана на цилиндр целая проблема. Порше не зря отказалась от воздушников с масло-воздушным охлаждением.Масса воздушников больше, банально потому, что все зависит от площади металлической рубашки охлаждения, и она тяжелее, чем пустотелые радиаторы и блок.Маслу естественно в таком моторе тяжелее, экологичность ниже. Даже мотоциклы из-за этого переходят на комбосистемы, когда в системе охлаждения есть вода, она стабилизирует температуру, снаружи блока есть оребрение и в обычном режиме работы нагрузка на радиатор пониженная, что позволяет обойтись очень компактной системой. Но машины работают на малой скорости и для них такой вариант не годится.Автор: Борис, спасибо за вдумчивый подход к содержанию статьи. Позвольте ответить на ваши суждения. Будучи журналистом (хоть и с техническим образованием), а не ученым-двигателистом, писал я материал не «из головы», а опираясь на публично доступные основы теории ДВС. Из которых следует, что равномерный прогрев цилиндра обеспечивать моторостроители научились – за счет подбора материалов цилиндра и головки, формы оребрения, дефлекторов системы обдува. Насчет малой теплоемкости воздуха вы правы, и я тоже пишу об этом, но при правильном расчете мотора этот фактор уже не определяющий. Так что проблемы с закоксовкой, недогревом, перегревом, неравномерными зазорами и т.п. существовали в пору разве что НАМИ-1, к середине ХХ века они были решены. О сложности форсировки и создания модификаций «воздушников» я упоминаю в тексте, это факт, да. Вопрос сравнения массы «воздушников» и «водянок» неоднозначен, поскольку во многом зависит от конкретной модели двигателя. Не стоит забывать, что к массе мотора с водяным охлаждением нужно относить массу антифриза, радиатора, шлангов и расширительного бачка.С мотоциклами автомобили я бы сравнивать не стал, поскольку у мотиков охлаждение не принудительное, а набегающим потоком. Поэтому и пробуют делать у них охлаждаемые жидкостью головки и цилиндры с привычным воздушным охлаждением.Естественно, что к каждому двигателю нужно подбирать соответствующее масло – и тогда ему будет не тяжело и не легко, а так, как положено при его в общем непростой судьбе. 🙂
Я когда-то разбирался с электронным зажиганием (принципом. ) и пытался просчитывать как меняется угол зажигания от температуры в том числе для избежания детонации и макс КПД, так вот скажу, что воздушная сист охл. не сможет эффективно держать двигатель в нужном режиме, вы же всю машину в радиатор не станете превращать, из чего следует, что сжатие в цилиндре будет меньше, с запасом на перегрев, то есть будет очевидно выше расход топлива, а при перегрузках и детонациях ресурс ниже, да и ресурс двигателя очевидно от более высокой и менее равномерно охл. движка будет ниже, правда это для бензинового движка, может у дизеля лучше будет, там принцип другой.
Какое-то противоречие. При повышенной температуре масло меньше окисляется. Неверно. При более жидком масле уменьшается трение. Это с каких же дел? При жидком масле нарушается масляная пленка и возникает полусухое трение. Последствия очевидны.
Забыли об еще одном достаточно известном и одном из самых интересных легковых «воздушников» — Chevrolet Corvair, 6-цилиндровый оппозит, 2,3-2,7 л, и один из первых серийных турбонаддувов
Устройство и принцип работы системы охлаждения двигателя
Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе системы смазки, отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.
- Виды систем охлаждения двигателя
- Устройство и принцип работы системы охлаждения ДВС
- Как устроен радиатор охлаждения двигателя
- Особенности работы датчика температуры ОЖ
- Что используют в качестве охлаждающих жидкостей
Виды систем охлаждения двигателя
Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:
- Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
- Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
- Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).
Устройство и принцип работы системы охлаждения ДВС
Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:
- Радиатор системы охлаждения.
- Вентилятор радиатора.
- Малый и большой охлаждающие контуры.
- Рубашка системы охлаждения (система каналов в блоке цилиндров).
- Датчик температуры.
- Термостат.
- Расширительный бачок.
- Насос (помпа).
- Радиатор печки.
- Масляный радиатор (опционально).
- Радиатор системы рециркуляции отработавших газов (опционально).
В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.
Большой и малый круги циркуляции ОЖ
Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.
Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.
Как устроен радиатор охлаждения двигателя
Радиатор системы охлаждения ДВС состоит из следующих элементов:
- Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
- Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
- Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
- Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
- Крепления.
Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.
Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.
Особенности работы датчика температуры ОЖ
Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.
Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем. Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом. Если же отклонения больше допустимых, датчик необходимо заменить.
В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.
Что используют в качестве охлаждающих жидкостей
В роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур. Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы. Чаще всего используется антифриз, который имеет более низкий порог замерзания.
При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.
Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки “Min” и “Max”. Когда количество жидкости ниже минимальной отметки – выполняют долив. Если после работы уровень вновь упал – это свидетельствует о разгерметизации системы.
Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.
Источник http://avtodvigateli.com/vidy/drugie/dvigatel-vozdushnogo-oxlazhdeniya.html
Источник Источник http://www.kolesa.ru/article/shest-mifov-o-vozdushnikah-chem-vozdushnoe-ohlazhdenie-kruche-zhidkostnogo-2016-02-05
Источник Источник http://techautoport.ru/dvigatel/sistema-ohlazhdeniya/sistema-ohlazhdeniya-dvigatelya.html