Диагностика датчиков электронных систем управления автомобилей

Ремонт и техническое обслуживание автомобилей

Диагностика датчиков электронных систем управления

Общие сведения о датчиках ЭСУ автомобилей

Электроника стремительно врывается в конструкцию автомобилей, занимая важное место в управлении работой сложных агрегатов, устройств и систем автомобиля. Благодаря электронным системам управления (ЭСУ) повышается безопасность, экономичность, надежность и комфортабельность эксплуатации автомобильного транспорта, и, что немаловажно, отстранение человека от управления элементами конструкции автомобиля, требующих быстроты и правильность принятия решений и действий.
Электронный мозг автомобиля, как и любой другой компьютер, выполняет эту задачу лучше и быстрее любого человеческого гения.

Для того, чтобы электронный мозг автомобиля мог принять наиболее оптимальный вариант решения текущей или внезапно возникающей задачи, он должен иметь своеобразных осведомителей, выполняющих функции «органов чувств» компьютера.
Такими «осведомителями» в электронной начинке автомобиля являются многочисленные и разнообразные датчики, поставляющие электронному блоку управления («мозгу») информацию о текущем состоянии отдельных параметров автомобиля, элементов его конструкции и систем.

При этом текущее состояние механизмов и систем машины непосредственно может быть оценено только физическими параметрами – температурой, давлением, объемом, массой, положением в пространстве, вибрацией, скоростью и т. п.
Так, например, температура двигателя, частота вращения коленчатого вала и его положение в пространстве или скорость автомобиля – физические параметры, и никакая компьютерная программа не способна определить их существенное значение для анализа и корректировки управляющих сигналов (компьютерных команд).

Электронный блок управления, как и любой компьютер, способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т. п. Поэтому ЭБУ необходимы «переводчики», способные преобразовать физические величины в величины электрические, пригодные для обработки в блоке управления в соответствии с заложенной в него программой.

Датчики являются важнейшими элементами любой электронной системы управления. Они позволяют преобразовывать любой физический параметр машины, механизма, системы или рабочего тела в электрический сигнал, который понятен компьютеру, т. е. электронному блоку управления (ЭБУ).

Датчик – это элемент электронной системы управления, предназначенный для преобразования физических величин, характеризующих работу объекта или системы, в электрические величины, пригодные для обработки электронным блоком управления.

Совокупность датчиков электронной системы обычно называют датчиковой аппаратурой.

Диагностика датчиков электронных систем управления автомобилей

Физическими параметрами элемента конструкции или рабочего тела можно назвать температуру, давление, концентрацию, влажность, пространственное положение, объемное или массовое количество воздуха, вибрацию.

Электрические параметры, которыми оперируют датчики для информирования анализирующих и управляющих элементов электронной системы (для автомобилей — ЭБУ) — напряжение, ток, частота.

Конструктивно датчики всегда имеют как минимум две части – чувствительный элемент, воспринимающий входное неэлектрическое воздействие, и преобразователь неэлектрического сигнала от чувствительного элемента в выходной электрический сигнал. При этом выходной сигнал может быть предварительно обработан датчиком (в зависимости от его интеграции), либо передаваться в первозданном виде для анализа в ЭБУ.

Классификация датчиков, используемых в машиностроении и другой технике, в т. ч. электронной, приведена на этой странице.

Требования, предъявляемые к датчикам

К датчикам, используемым в электронных системах управления, предъявляются следующие требования:
— высокая надежность;
— необходимый диапазон измерений;
— статическая характеристика близкая к линейной;
— достаточная чувствительность и стабильность;
— погрешность в пределах, не превышающих влияние на работоспособность системы;
— отсутствие обратного воздействия на измеряемый объект или параметр.

Датчики автомобильных ЭСУ

Как упоминалось выше, любой автомобильный датчик подключаются к блоку управления (ЭБУ) или средствам индикации для передачи сведений (информации) о параметрах контролируемой данным датчиком среды или параметра.

Датчики современных автомобильных электронных систем автоматического управления (ЭСАУ) преобразуют информацию о значениях контролируемых неэлектрических параметров в электрический сигнал – напряжение, ток, частоту, фазу и т. д. Эти сигналы преобразуются в цифровой код в ЭБУ и обрабатываются в соответствии с заложенным в него программным обеспечением.
По результатам обработки сигналов с датчиков электронный блок управления (ЭБУ) управляет через исполнительные механизмы (реле, соленоиды, электродвигатели) объектом — узлом, механизмом, системой или всей машиной.

Так, например, в двигателе автомобиля датчики используются для измерения температур и давлений различных жидких и газовых сред — температуры всасываемого воздуха, абсолютного давления во впускном коллекторе, давления масла, температуры охлаждающей жидкости, давления топлива в магистралях и т. п.
Также практически все современные двигатели внутреннего сгорания (ДВС) автомобилей снабжены датчиками детонации, нагрузки двигателя, содержания кислорода в выхлопных газах и др.

Практически все движущиеся части автомобиля снабжены датчиками скорости или положения, например, датчик скорости автомобиля, положения дроссельной заслонки, положения коленчатого (распределительного) вала, положения и скорости вращения вала в коробке переключения передач (КПП), положения клапана рециркуляции выхлопных газов и др.

В результате развития систем активной безопасности многие автомобили оснащаются не только антиблокировочной системой тормозов, но и более сложной системой управления курсовой устойчивостью и стабильностью движения автомобиля.
Для таких систем кроме датчиков определения скорости вращения колес и давления в тормозных магистралях необходимы датчик скорости вращения автомобиля вокруг вертикальной оси, датчик поперечного ускорения автомобиля, датчик положения рулевого колеса.

Для обеспечения пассивной безопасности водителя и пассажиров необходимы датчики удара и акселерометры. Оптимальную работу таких систем обеспечивают датчик занятости сиденья переднего пассажира и его веса, датчики застегнутых ремней безопасности, датчики положения сидений. Эта информация используется для оптимального надувания подушек безопасности.

Более дорогие автомобили оснащаются датчиками для предупреждения столкновений (например, радарные), датчиками определения близости других автомобилей, датчиками высоты кузова по отношению к шасси, давления в шинах и многими другими.

В системе управления климатом в салоне автомобиля (климат-контроль) используются различные датчики для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом, дождя и освещенности.

Это далеко не весь перечень существующих и используемых датчиков в современных автомобилях.
На рис. 2 показано характерное (классическое) расположение различных датчиков на легковом автомобиле. Конечно же, это лишь эталонная схема, и в зависимости от марки автомобиля, модели, года выпуска расположение датчиков может отличаться от классической схемы.

Диагностика датчиков электронных систем управления автомобилейРис. 2. Классическое расположение датчиков легкового автомобиля:

1 — датчик положения заслонок управляемого впускного коллектора; 2 — датчик тахометра; 3 — датчик положения распределительного вала (датчик фаз); 4 — датчик нагрузки двигателя; 5 — датчик положения коленчатого вала; 6 — датчик крутящего момента двигателя; 7 — датчик количества масла; 8 — датчик температуры охлаждающей жидкости; 9 — датчик скорости автомобиля; 10 — датчик давления масла; 11 — датчик уровня охлаждающей жидкости; 12 — радарный датчик системы торможения; 13 — датчик атмосферного давления; 14 — радарный датчик системы предотвращения столкновений; 15 — датчик скорости вращения ведущего вала КПП; 16 — датчик выбранной передачи в КПП; 17 — датчик давления топлива в рампе форсунок; 18 — датчик скорости вращения рулевого колеса; 19 — датчик положения педали; 20 — датчик скорости вращения автомобиля вокруг вертикальной оси; 21 — датчик противоугонной системы; 22 — датчик положения сиденья; 23 — датчик ускорения при фронтальном столкновении; 24 — датчик ускорения при боковом столкновении; 25 — датчик давления топлива в баке; 26 — датчик уровня топлива в баке; 27 — датчик высоты кузова по отношению к шасси; 28 — датчик угла поворота рулевого колеса; 29 — датчик дождя или тумана; 30 — датчик температуры охлаждающего воздуха; 31 — датчик веса пассажира; 32 — датчик кислорода; 33 — датчик наличия пассажира на сиденье; 34 — датчик положения дроссельной заслонки; 35 — датчик пропусков воспламенения; 36 — датчик положения клапана рециркуляции выхлопных газов; 37 — датчик абсолютного давления во впускном трубопроводе; 38 — датчик азимута, датчик уровня тормозной жидкости; 39 — датчик скорости вращения колес; 40 — датчик давления в шинах.

Описание некоторых из этих датчиков можно ознакомиться здесь.
В настоящей статье дается более полная характеристика некоторых датчиков автомобильных ЭСУ, а также методы диагностирования и проверки этих датчиков с помощью средств диагностики – сканеров или адаптеров, мультиметра и других приборов.

Цикл статей включает описание основных методов диагностирования следующих датчиков ЭСУ автомобилей:

Кроме рассмотренных в данном цикле статей датчиков ЭСУ иногда приходится диагностировать следующие датчики:

Датчик абсолютного давления (разрежения) во впускном коллекторе (ДАД) .
Выходной сигнал ДАД меняется от 4,5 В при 101 кПа (зажигание включено, двигатель не запущен, уровень моря) до 0,5 В при 20,1 кПа. При ненагруженном холостом ходе на уровне моря сигнал с ДАД составляет 1,5 В (40,4 кПа).
Этот датчик обычно используется в диагностических целях и как датчик нагрузки двигателя (ДНД).

Датчик температуры воздуха (ДТВ) .
Датчик температуры воздуха позволяет корректировать данные о количестве воздуха, поступившего в цилиндры (показания ДМРВ) с учетом его плотности, которая зависит от температурно-климатических условий, в которых работает двигатель.
Датчик выполнен на основе термистора с отрицательным температурным коэффициентом сопротивления. Размещен в системе подачи и очистки воздуха (в индукционном канале).
Рабочий диапазон температур — 40. 120 °С. При 30 °С выходное напряжение датчика 2,6 В.

Датчик скорости автомобиля (ДСА) .
Выдает импульсный сигнал с частотой, пропорциональной скорости автомобиля. Контроллер в ЭБУ двигателя использует сигнал от ДСА для управления коробкой передач и отключения топливоподачи при недопустимо высокой скорости автомобиля, а также для эффективного управления некоторыми электронными системами автомобиля (например, системой «стоп-старт»).

В заключение следует отметить, что работы по проверке работоспособности датчиков автомобильных электронных систем управления не регламентируются, т. е. не являются обязательными при выполнении планового технического обслуживания автомобилей, и проводятся лишь в случаях обнаружения соответствующих неисправностей.

Диагностика датчики управления двигателем автомобиля

В.Яковлев
Продолжаем публикацию материалов по способам диагностирования входных датчиков электронной системы автоматического управления автомобильным поршневым двигателем.

Датчик температуры охлаждающей жидкости (рис. 1а)

Диагностика датчиков электронных систем управления автомобилей

представляет собой термистор, т.е. полупроводниковый резистор, сопротивление которого изменяется от температуры. Датчик ввернут в проточный патрубок охлаждающей системы двигателя (рис. 1б) и постоянно находится в потоке охлаждающей жидкости. При низкой температуре двигателя датчик имеет высокое сопротивление (около 100 кОм при -40°С), а при высокой температуре — низкое (10-30 Ом при 130°С). Электронный блок управления двигателем (ЭБУ-Д) подает к датчику через сопротивление определенной величины стабилизированное напряжение 5 В и с помощью двигателя (делителя?) измеряет падение напряжения на датчике. Оно будет высоким на холодном двигателе и низким, когда двигатель прогрет. По измерению падения напряжения на датчике блок управления определяет температуру охлаждающей жидкости. Эта температура влияет на работу большинства систем, которыми управляет электронная автоматика.

Например, по температуре двигателя корректируется состав топливовоздушной смеси (ТВ-смеси): для холодного двигателя смесь должна быть обогащена, для прогретого обеднена. Угол опережения зажигания также корректируется по температуре двигателя.

Обрыв (плохое соединение) в цепи датчика температуры охлаждающей жидкости интерпретируется в ЭБУ-Д как низкая температура двигателя. ТВ-смесь при этом излишне обогащается, и двигатель начинает работать не экономично, загрязняет окружающую среду. В регистраторе неисправностей (в памяти ЭБУ-Д) будет записан код «Работа двигателя на богатой ТВ-смеси».

Замыкание в цепи или неисправность датчика температуры охлаждающей жидкости интерпретируется в ЭБУ-Д как перегрев двигателя. Система впрыска топлива будет формировать переобедненную ТВ-смесь, и работа двигателя станет неустойчивой. В памяти регистратора ЭБУ-Д запишется код неисправности «Работа двигателя на бедной ТВ-смеси».

Датчик температуры охлаждающей жидкости следует проверять в следующих случаях:
• при обнаружении в регистраторе неисправностей соответствующих кодов;
• при затрудненном пуске, неустойчивой работе или остановках двигателя на холостом ходу;
• при повышенном расходе топлива, детонации или повышенной концентрации СО в выхлопных газах;
• при негаснущей контрольной лампе «перегрев двигателя» (если имеется).

Предварительная проверка компонентов системы охлаждения двигателя

Перед проверкой датчика температуры охлаждающей жидкости следует убедиться в исправности системы охлаждения двигателя.

Система охлаждения должна быть правильно заправлена охладителем. Радиатор и резервуар расширителя должны быть заполнены по норме. Крышка радиатора снимается только на холодном двигателе, иначе охладитель с рабочей температурой более 100°С может причинить ожоги. Для нормального функционирования датчика его рабочая часть должна постоянно находиться в потоке охлаждающей жидкости.

Крышка радиатора должна быть герметичной, иначе в системе охлаждения могут образоваться воздушные «карманы» и показания датчика температуры будут неверными.

Состав охладителя должен соответствовать рекомендациям производителя. Обычно используется смесь 50% воды и 50% антифриза. Такая смесь оптимальна по теплопроводности.

Вентилятор должен нормально работать, чтобы двигатель не перегревался. Если в системе охлаждения установлены термостат или электроконтактный термовыключатель, то необходимо убедиться в их работоспособности.

Диагностика датчика температуры охлаждающей жидкости с помощью мультиметра и контактного пирометра

С помощью мультиметра проверяется сопротивление терморезистора в отключенном от жгута датчике. Выходное напряжение датчика проверяется при подключенном жгуте. Оба этих параметра должны соответствовать спецификации. Для некоторых моделей американских автомобилей стандартные значения указанных параметров датчиков температуры приведены в таблице.

Непосредственно на работающем двигателе автомобиля темпера¬тура проверяемого датчика может быть проконтролирована с помощью контактного пирометра (рис. 1в).

Если датчик температуры исправен, а соответствующий код неисправности сохраняется в памяти ЭБУ-Д, то скорее всего, проблема с соединительным жгутом. Проводка между датчиком и ЭБУ-Д проверяется по методикам и диагностическим картам производителя.

Неисправный датчик не будет соответствовать стандартным параметрам и должен быть заменен, так как ремонту не подлежит.

Номинальное (рабочее) значение температуры охлаждающей жидкости варьируется в зависимости от моделей двигателя. На одних моделях термостат открывается при температуре 82°С, на других — при 90°С и выше.

Прежде, чем заменять датчик, следует убедиться, что двигатель работает с температурой, оговоренной в спецификации. Обычно считается, что двигатель полностью прогрет, когда вентилятор включился и выключился два раза.

Диагностика датчиков электронных систем управления автомобилей

Диагностика датчика температуры охлаждающей жидкости с помощью сканера

Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки (ДПД) установлен сбоку на дроссельном патрубке и связан (механически сочленен) с осью дроссельной заслонки. Датчик представляет собой трехвыводной потенциометр, на один вывод которого подается плюс стабилизированного напряжения питания 5 В, а другой вывод соединен с массой. С третьего вывода потенциометра (от ползунка) снимается выходной сигнал для ЭБУ-Д. Когда, от воздействия на педаль управления, дроссельная заслонка поворачивается, изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 1 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть не менее 4 В. Отслеживая выходное напряжение датчика, электронный блок управления корректирует количество впрыснутого форсунками топлива в зависимости от угла открытия дроссельной заслонки. Так в системах топливного питания с электронно-управляемым впрыском реализуется акселерация. В большинстве случаев ДПД не требует никакой регулировки, так как блок управления воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки), как нулевую отметку. Однако датчики положения дроссельной заслонки некоторых производителей нуждаются в настройке, которая в таком случае выполняется по спецификации и методике производителя.

В соответствии с американским стандартом исправный ДПД должен выдавать напряжение в диапазоне 0,5. 4,5 В в зависимости от положения дроссельной заслонки. Сигнал при повороте дроссельной заслонки должен меняться плавно, без скачков и провалов.

При проверке ДПД наиболее эффективным оказывается применение автомобильных цифровых запоминающих осциллографов (например, «Fluke 98»).

На рис. 2 показано подключение ДПД к автомобильному осциллографу, на рис. 3 — осциллограммы.

Диагностика датчиков электронных систем управления автомобилей

По осциллограмме сразу видно исправен датчик или нет. Наличие провалов или скачков в выходном напряжении ДПД обязательно приводит к неправильной работе системы управления двигателем и ухудшению ездовых характеристик двигателя.

Провалы и скачки в выходном сигнале ДПД заслонки могут иметь длительность порядка миллисекунд и не могут быть обнаружены с помощью обычного вольтметра. Они появляются при износе резистивного слоя или ползунка в потенциометрическом датчике. Нужен автомобильный мультиметр с режимом определения максимального/минимального значения сигнала или запоминающий осциллограф. ДПД следует проверять в следующих случаях:
• при получении соответствующих кодов неисправностей;
• при затрудненном пуске, неустойчивой работе или остановках двигателя на холостом ходу;
• при повышенном расходе топлива, детонации, обратной вспышке, задержках, провалах, подергивании двигателя и т.д.

Датчик концентрации кислорода

В современных автомобильных двигателях, снабженных системой впрыска топлива и каталитическим нейтрализатором, необходимо точно контролировать состав топливовоздушной смеси (ТВ-смеси) и поддерживать коэффициент избытка воздуха на постоянном уровне (а=1), чем обеспечиваются экономия топлива и уменьшение содержания токсичных веществ в выхлопе. Для этого применяются датчики концентрации кислорода (ДКК), устанавливаемые в системе отвода выхлопных газов вырабатывающие сигнал зависящий от концентрации кислорода в выхлопе. При изменении концентрации кислорода в отработавших газах ДКК формирует выходное напряжение, которое изменяется приблизительно от 0,1 В (высокое содержание кислорода — бедная смесь), до 0,9 В (при низком содержании кислорода — богатая смесь). Для нормальной работы датчик должен иметь температуру не ниже 300°С. Поэтому для быстрого прогрева датчика после пуска двигателя, в него встроен нагревательный элемент. Сигнал от ДКК используется в ЭБУ двигателя для коррекции длительности открытого состояния форсунок и поддержания, тем самым, стехиометрического состава топливовоздушной смеси. Если смесь бедная (низкая разность потенциалов на выходе датчика), то в ЭБУ-Д вырабатывается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) — дается команда на обеднение смеси.

В основном используются циркониевые и титановые датчики концентрации кислорода, работа которых основывается на том факте, что их выходное напряжение остается постоянно (равным 0,45 В при а=1), но может изменяться скачком от 0,1 В до 0,9 В при изменении коэффициента избытка воздуха в диапазоне ос=0,99. 1,1 при переходе через значение а=1.

Имеется несколько разновидностей датчиков концентрации кислорода:

Диагностика датчика кислорода с помощью сканера

Диагностика датчика кислорода с помощью мультиметра

Диагностика датчиков электронных систем управления автомобилей

Двигатель прогревают, система управления должна работать в замкнутом режиме, мультиметр покажет среднее значение напряжения на выходе датчика:
• если датчик не реагирует на изменяющуюся концентрацию кислорода в выхлопных газах, на его выходе будет постоянное напряжение примерно 450 мВ. Однако вывод о неисправности датчика делать преждевременно, так как исправный датчик с симметричным выходным сигналом даст выходной сигнал со средним значением напряжения 450-500 мВ;
• показания более 550 мВ означают, что большую часть времени напряжение на выходе датчика высокое, т.е. топливная система подает в двигатель богатую смесь, или датчик закоксован;
• показания менее 350 мВ означают, что большую часть времени напряжение на выходе датчика низкое, т.е. топливная система подает в двигатель бедную смесь. Возможна утечка разрежения во впускном коллекторе или ограничена подача топлива через засорившиеся фильтр или форсунку. Если используемый мультиметр поддерживает режим определения максимального и минимального значения сигнала, результат будет более информативен (табл. 2).

Диагностика датчиков электронных систем управления автомобилей

Проверка датчика кислорода с помощью осциллографа

Осциллограф является удобным средством для проверки датчика кислорода. Прибор подключается к выходу датчика, двигатель прогревается, система управления должна работать в замкнутом режиме. Ос циллограмма для случая полной исправности датчика ДКК показана на рис. 5: колебания равномерные, максимальное напряжение больше 800 мВ, минимальное — меньше 200 мВ, частота 0,5-10 Гц, фронты крутые.

На рис. 6 представлены осциллограммы выходного сигнала датчика кислорода при ускорении и торможении автомобиля на испытательном тормозном стенде. Топливная смесь соответственно обогащается или обедняется.

Диагностика датчиков электронных систем управления автомобилей

По осциллограмме выходного сигнала датчика кислорода можно проверить правильность работы системы управления двигателем в замкнутом режиме. Двигатель должен быть прогрет. Наблюдая за экраном осциллографа следует подать немного пропана из баллона в воздухозаборник двигателя. Датчик отреагирует на обогащение смеси: осциллограмма сначала будет такой как показано на рис. 7, затем ЭБУ-Д уменьшит подачу топлива и снова установятся колебания, как на рис. 5. После прекращения подачи пропана, сначала осциллограмма будет, как на рис. 8, затем восстановится рабочий режим (рис. 5).

В соответствии с требованиями стандарта ОВD-2 ситема управления двигателем с двумя датчиками кислорода контролирует исправность каталитического нейтрализатора. Для этого используется второй датчик кислорода на его выходе. На рис. 9 показаны осциллограммы выходных напряжений датчиков кислорода на входе и выходе каталитического нейтрализатора.

Диагностика датчиков электронных систем управления автомобилей

Неисправности, приводящие к неверным показаниям датчика кислорода

Напомним, что датчик кислорода реагирует на парциальное давление кислорода в выхлопном газе, а не на наличие топлива. Поэтому, в некоторых случаях датчик кислорода ложно индицирует либо бедную, либо богатую смесь.
• При пропуске зажигания (например, неисправна или закоксована свеча), не вступивший в реакцию горения кислород поступает из цилиндра в выпускной коллектор, где датчик кислорода ложно регистрирует обеднение топливовоздушной смеси.
• При негерметичности выпускного коллектора датчик кислорода будет реагировать на кислород воздуха поступающего извне.

В любых случаях лектронный блок управления двигателем реагирует на ложное обеднение ТВ-смеси как на истинное и автоматически увеличивает подачу топлива в цилиндры. Это приводит к забрызгиванию свечей зажигания, к пропускам воспламенения и к значительному перерасходу топлива.

Датчик кислорода выдает ложный сигнал об обогащении ТВ-смеси, если имеет место «отравление» датчика. Отравление наступает при появлении некоторых веществ в выпускном коллекторе, что вызывает изменение статических характеристик датчика кислорода и постепенный выход его из строя. Чаще всего отравителями являются свинец (Pb) из этилированного бензина или кремний (Si) из силиконовых герметиков (рис. 10).

Ложное обогащение может иметь место и при неисправности перепускного клапана в системе рециркуляции выхлопных газов от электрических наводок со стороны близкорасположенного высоковольтного провода системы зажигания, а также при плохом заземлении датчика кислорода.

Внешний осмотр датчика кислорода

Неисправный датчик кислорода ремонту не подлежит и требует замены, но перед заменой целесообразно внимательно осмотреть снятый датчик. Это поможет выяснить причину из-за которой датчик вышел из строя. В противном случае новый датчик прослужит недолго.

Черная сажа на датчике обычно образуется при работе на богатой ТВ-смеси.
Отложение на датчике белого (как мел) порошка бывает при «отравлении» датчика кремнием, например, если при ремонте двигателя был неправильно применен силиконовый герметик. Наличие белого песка на датчике означает его отравление антифризом из системы охлаждения. Датчик в этом случае может быть и зеленого цвета, при этом, скорее всего, дефектны головка цилиндров или прокладка головки. Темно-коричневые отложения на датчике свидетельствует, что в выхлопных газах слишком много масла (неисправна система вентиляции картера, изношены уплотнительные кольца поршней и т.д.).

Датчики расхода воздуха

Диагностика датчиков электронных систем управления автомобилей

Воздушный поток воздействует на измерительную (парусную) заслонку прямоугольной формы. Заслонка закреплена на оси электрического потенциометра, на который подается стабилизированное напряжение +5 В от ЭБУ-Д. Поворот заслонки преобразуется потенциометром в напряжение, пропорциональное объемному расходу воздуха. Воздействие воздушного потока на измерительную заслонку уравновешивается пружиной. Для гашения колебаний, вызванных пульсациями воздушного потока и динамическими воздействиями, характерными для автомобиля (особенно при езде по плохим дорогам), в расходомере имеется пневматический демпфер.

Из сказанного ясно, что основой датчика в расходомере воздуха с измерительной заслонкой является потенциометрический преобразователь. Диагностика его неисправностей проводится также как и для ДПД (см. «Ремонт & Сервис», № 9, 2002). На последних моделях автомобилей расходомеры воздуха не применяются, их заменили массметрами.

Датчик массового расхода воздуха (массметр) устанавливается между воздушным фильтром и шлангом, идущим к дроссельному патрубку. В датчике используется чувствительный элемент в виде платиновой нити. Одна часть нити — это элемент, определяющий температуру воздуха, а две других части, соединенные параллельно, нагреваются до определенной температуры электрическим током, поступающим от электронной измерительной схемы. Проходящий через датчик воздух охлаждает нагреваемые элементы. Электронная измерительная схема датчика определяет массовый расход воздуха путем измерения мощности электрического тока, необходимой для поддержания заданной температуры нагреваемых элементов. Информацию о расходе воздуха датчик выдает в виде частотного сигнала (2. 10 кГц) или в виде постоянного напряжения. Чем больше расход воздуха, тем выше частота сигнала или выходное напряжение датчика. Блок управления использует информацию от датчика массового расхода воздуха для формирования длительности импульса, определяющего время открытого состояния форсунок.

Прежде чем проверять датчик расхода воздуха (независимо от его конструкции), следует убедиться в герметичности системы подачи воздуха в двигатель (рис. 12). Весь воздух, поступающий в двигатель, должен проходить только через датчик расхода воздуха, иначе ЭБУ-Д будет обеднять ТВ-смесь.

При нарушении герметичности в системе подачи воздуха следует с помощью сканирующего тестера определить средние коэффициенты коррекции подачи топлива в двух случаях: на холостых оборотах и на повышенных оборотах 3000 об/мин. В первом случае (на холостых оборотах) сканер зафиксирует обеднение ТВ-смеси, а во втором (на 3000 об/мин) — увеличившееся потребление воздуха станет незаметным.

Выходной сигнал исправного датчика массового расхода воздуха независимо от его конструкции (с выходом по напряжению или по частоте) должен линейно меняться с изменением оборотов двигателя. Для проверки этого можно использовать мультиметр или осциллограф.

Датчик массового расхода воздуха следует проверять в следующих случаях:
• при получении соответствующих кодов неисправностей;
• при затрудненном пуске или невозможности запуска двигателя;
• при неустойчивой работе или остановках двигателя на холостом ходу;
• при повышенном расходе топлива, обратной вспышке, детонации, неисправностях каталитического нейтрализатора.

При проведении диагностики датчиков ЭСАУ-Д с помощью сканирующего тестера следует иметь в виду, что схема электронного резервирования в ЭБУ-Д заменяет показания неисправных датчиков на аварийные значения и использует их в управляющих алгоритмах. При этом параметры выходных сигналов датчиков (напряжение, частота) будут иметь как бы истинные значения.

Например, при отключении датчика температуры охлаждающей жидкости сигнал на входе ЭБУ-Д будет соответствовать температуре +40°С, а в алгоритме управления будет задействовано аварийное значение +80°С. При отключении датчика массового расхода воздуха сигнал на входе ЭБУ-Д соответствует расходу 0 г/с. Но при вычислении времени открытого состояния форсунок будет использовано значение 7 г/с, определенное по сигналам других датчиков.

В подозрительной (неопределенной) ситуации следует проверить как значение информационного параметра сигнала датчика, так и значение измеряемой физической величины в ЭБУ-Д. Например, при подозрении на неисправность датчика температуры двигателя надо измерить и напряжение на выходе датчика температуры охлаждающей жидкости, и значение температуры, используемое в ЭБУ-Д.

Индукционные датчики углового положения и угловой скорости

Индукционные датчики используются при определении скорости автомобиля в системах АБС и круиз-контроля, а также для определения углового положения коленчатого и распределительного валов.

Датчик (рис. 13) состоит из постоянного магнита с обмоткой и зубчатого диска — ротора, закрепленного в ступице или на валу. При вращении зубчатого диска в обмотке датчика наводится ЭДС. Например, для АБС диск-ротор имеет 45 зубцов, что соответствует одному периоду выходного напряжения на 8° поворота. Частота выходного сигнала пропорциональна скорости вращения автомобильного колеса. ЭБУ-АБС использует эту информацию для определения скорости вращения колес и ускорения при торможении.

В датчике положения коленчатого вала два зубца на роторе отсутствуют для синхронизации. Чувствительность индукционных датчиков зависит от скорости вращения задающего диска-ротора. Современные датчики выполняются, как правило, на основе магнитоуправляемых микросхем, благодаря чему выдают сигнал даже при остановленном зубчатом диске.

Датчики углового положения лучше проверять с помощью осциллографа (рис. 14). На рис. 15 показаны характерные осциллограммы.

Диагностика датчиков электронных систем управления автомобилей

Датчик положения коленчатого вала — единственный в электронной системе управления двигателем, для которого не может быть сформировано аварийное значение сигнала при неисправности. При выходе его из строя синхронизация систем зажигания и впрыска топлива нарушается и двигатель перестает работать. В заключение следует отметить, что работы по проверке работоспособности датчиков автомобильных электронных систем управления не регламентируются и проводятся в случаях обнаружения соответствующих неисправностей.

Датчики систем управления двигателем

Датчиковая аппаратура – важная и неотъемлемая часть системы управления двигателем. Прежде чем начинать подробный разговор обо всем многообразии датчиков и методиках их диагностики, нужно ввести несколько фундаментальных понятий.

Что такое датчик, зачем он нужен, какую функцию выполняет?

Основным элементом системы управления двигателем является электронный блок управления (ЭБУ). Он способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т.п. Но параметры работы двигателя носят чисто физические характеристики. Чтобы сообщить их блоку управления, необходимо преобразовать физическую величину в величину электрическую, пригодную для обработки в блоке управления в соответствии с заложенной в него программой. Итак,

Датчик – это элемент системы управления двигателем, задача которого состоит в преобразовании физических величин, характеризующих работу двигателя, в электрические величины, пригодные для обработки электронным блоком управления.

Перечислим физические величины и явления, информация о которых необходима блоку управления:

  • температура;
  • давление;
  • частота вращения;
  • концентрация;
  • количество воздуха;
  • пространственное положение;
  • вибрация.

Перечисленную совокупность датчики преобразуют в электрические параметры:

  • напряжение;
  • ток;
  • частота.

Диагностика датчиков электронных систем управления автомобилей

Принцип диагностики датчиковой аппаратуры

Диагностика любого датчика ЭСУД сводится к проверке адекватности преобразования физического параметра в электрический параметр.

Необходимо установить заведомо известное значение параметра на входе датчика и проконтролировать его выходной сигнал при помощи мотортестера или сканера.

Простой пример: датчик абсолютного давления во впускном коллекторе. В качестве эталона можно использовать атмосферное давление, которое будет присутствовать во впускном коллекторе заглушенного двигателя. Проконтролировав отображаемое датчиком в этом состоянии давление при помощи сканера, можно сделать вывод о достоверности его показаний.

Приведенный пример весьма примитивен, он призван лишь продемонстрировать общий принцип диагностики датчиковой аппаратуры. В обучающем курсе «Диагностика датчиковой аппаратуры» методики проверки каждого типа датчиков описаны очень подробно.

Предположим, есть некий датчик, подключенный к ЭБУ, и есть необходимость оценить его работоспособность (см. рисунок). Рассмотрим классическую схему подключения датчиков к блоку.

С блока управления на датчик подается питающее напряжение 5 В и масса. Сигнал с датчика поступает в блок и обрабатывается им.

Диагностика датчиков электронных систем управления автомобилей

Для проверки исправности датчиков применяются два основных диагностических прибора: сканер и мотортестер.

Подключив сканер, диагност получает возможность «увидеть» сигнал датчика «глазами» блока управления. Для того чтобы оценить выходной сигнал датчика при помощи мотортестера, необходимо подключить его щупы к цепи датчика, как показано на рисунке: один к массе, другой к сигнальному проводу.

Работа сканером более проста и удобна, но не следует забывать, что обмен информацией между ЭБУ и сканером происходит отнюдь не мгновенно, и какие-то интересные моменты сигнала можно попросту не обнаружить. Помимо этого, сканер невозможно использовать на достаточно старых автомобилях, примерно до середины девяностых годов, вследствие низкого уровня интеллекта и быстродействия тогдашних блоков управления.

Напротив, мотортестер позволяет оценить сигнал датчика очень качественно и подробно, не пропустив ни малейшей детали, хотя трудоемкость его применения выше, чем у сканера. Обратите внимание на то, что щупы мотортестера правильнее всего подключать непосредственно к разъему датчика. Особенно это касается щупа массы: не следует присоединять его к первой попавшейся точке массы двигателя.

Краткие итоги

Датчик представляет собой преобразователь физического параметра в параметр электрический, пригодный для обработки в ЭБУ. Физическими параметрами можно назвать температуру, давление, концентрацию, пространственное положение, количество воздуха, вибрацию. Электрические параметры, с которыми оперируют датчики, это напряжение, ток, частота. Проверку датчиков можно выполнить двумя приборами: сканером, подключив его к ЭБУ, и мотортестером, подключив его щупы непосредственно к сигнальному и массовому выводам датчика.

Особенности электрического подключения датчиков к цепям ЭСУД

Каким образом датчики подключаются к блоку управления?

Схема подключения датчиков представляет собой очень важный момент. Обратимся к рисунку.

Диагностика датчиков электронных систем управления автомобилей

Существует так называемая «масса», или общий провод электропроводки автомобиля. Она объединяет металлические части кузова и двигателя и подключается к минусовой клемме аккумулятора. Большинству датчиков требуется подключение к массе в силу особенностей их работы. ЭБУ также подключается к массе, на рисунке это точка 1.

Рассмотрим, каким образом подключается масса датчиков. На первый взгляд, массу можно подключить к датчику в любой ближайшей точке двигателя или кузова (точка 2), а сигнальный вывод датчика подключить к одному из контактов в разъеме блока. Посмотрим на полученную схему критически.

Что получается?

А получается, что цепь датчика включает в себя участок кузова или двигателя автомобиля между точками 2 и 1. Одновременно с этим по кузову идут токи мощных нагрузок вроде ламп головного света, вентиляторов, электродвигателей стеклоочистителя и т.п. Получается, что по одному и тому же пути идут слабые токи датчика, содержащие полезную информацию, и большие токи мощных нагрузок. В итоге в цепи датчика возникают сильные помехи от электроприборов автомобиля и системы зажигания.

Такая ситуация совершенно недопустима, и подобное подключение массы датчиков (за редчайшим исключением) нигде не используется.

Куда же подключается масса датчиков? Она подключается непосредственно к блоку управления.

Диагностика датчиков электронных систем управления автомобилей

В такой ситуации цепь датчика оказывается не привязанной к цепи протекания токов нагрузок и сигнал датчика без помех и искажений поступает в ЭБУ. Сам блок, конечно же, подключен к массе автомобиля. Внутренняя структура ЭБУ, его характерные дефекты и методики ремонта изложены в обучающем курсе «Ремонт электронных блоков управления».

Если открыть любую базу данных и посмотреть назначение выводов ЭБУ, то можно увидеть назначение выводов вроде «Масса датчика положения дроссельной заслонки», «Масса датчика абсолютного давления» и т.п. Отдельным выводом выполнена «Масса электронного блока управления». Вот это и есть точка подключения массы ЭБУ, а массы всех датчиков подключаются к ЭБУ отдельно, внутри него они соединяются вместе и подключаются к массе блока.

Убедиться в сказанном достаточно просто с помощью тестера: достаточно прозвонить цепь массы любого датчика на минусовую клемму аккумулятора, а затем, сняв разъем с ЭБУ, убедиться, что цепь разорвалась.

В качестве примера приведем часть схемы ЭСУД с блоком управления MR-140.

Диагностика датчиков электронных систем управления автомобилей

Несложно убедиться в том, что массы датчика температуры охлаждающей жидкости (Engine Coolant Temperature, ECT Sensor), датчика положения дроссельной заслонки (Throttle Position, TP Sensor), датчика температуры воздуха (Intake Air Temperature, IAT Sensor) объединены сборкой S101 и подключены к выводу М64 блока управления, обозначенному как вывод массы. В эту же точку подключены выводы массы и экранирующей оплетки датчика детонации (Knock Sensor). Массы датчиков давления в системе кондиционирования воздуха (Air Condition Pressure, ACP Sensor) и датчика неровной дороги (Rough Road Sensor) также объединены и подключены к выводу К34 электронного блока.

Есть два исключения из этого правила: резонансный датчик детонации конструкции GM, который применялся на первых системах управления ВАЗ, и однопроводной датчик концентрации кислорода. Но это исключения, а отнюдь не правило.

К сожалению, многолетняя практика диагностики двигателей дает право констатировать, что вышеизложенные факты понимают далеко не все специалисты автосервиса.

Приходилось видеть двигатели, в электропроводку которых было произведено вмешательство с целью создать более надежный контакт массы датчика расхода воздуха. При этом провод массы подсоединялся непосредственно к выводу датчика и к минусовой клемме аккумулятора. Такое решение совершенно недопустимо. Оно приводит к значительному повышению уровня помех в цепи датчика вследствие образования контура и даже может при определенных обстоятельствах вызвать выход ЭБУ из строя. Никакое изменение схемы подключения датчиков, никакое привнесение лишних проводов в ЭСУД недопустимо.

Существуют датчики, информацию с которых необходимо донести до ЭБУ максимально качественно, без помех. Примером может служить датчик положения коленчатого вала. В таком случае провода от датчика до ЭБУ заключают в экран, представляющий собой гибкую оплетку из алюминиевой фольги либо тонкого провода. Назначение экрана – защита цепи датчика от внешних электромагнитных помех. Сам экран также подключается к массовому проводу системы и обозначается на электрической схеме в виде пунктирного контура вокруг проводов. Примером такого подключения служит датчик детонации на рисунке выше.

Разновидности датчиков. Принцип работы и методики проверки

Если изучать датчиковую аппаратуру, опираясь на существующие руководства по ремонту той или иной марки автомобилей, то можно обнаружить, что в каждом руководстве используется один и тот же подход. Перечисляются датчики, входящие в состав описываемой системы управления, и озвучивается их назначение. Для другого двигателя и другой системы опять-таки перечисляются датчики и т.д.

В некоторых книгах датчики ЭСУД и контрольные датчики, необходимые, например, для работы панели приборов (датчик давления масла, уровня охлаждающей жидкости и т.п.) вообще свалены в одну кучу. Такой подход представляется неконструктивным и не отображающим истинной картины.

Рассматривая датчиковую аппаратуру, мы будем применять другой метод подачи информации. Все датчики будут рассматриваться не по признаку наличия их на той или иной ЭСУД, а по принципу действия, по физическому явлению, лежащему в основе их функционирования.

Такой подход видится гораздо более правильным и доступным для понимания. Датчики одного и того же принципа действия используются в абсолютно разных узлах автомобиля, и для диагноста, усвоившего принцип их работы и методику диагностики, не составит труда проверить работоспособность любого из них.

Например, датчик уровня топлива, датчик расхода воздуха флюгерного типа, датчик положения клапана рециркуляции отработанных газов и датчик положения педали акселератора, несмотря на кажущуюся несхожесть, диагностируются абсолютно одинаково, по одному и тому же принципу.

Поэтому будем рассматривать не наборы датчиков для той или иной системы управления, а их типы, исходя из физического принципа функционирования. Для примера разберем датчики потенциометрического типа.

Датчики потенциометрического типа

Это один из самых несложных в понимании принципов действия и диагностики типов датчиков.

Что такое потенциометр?

Его смысл зашифрован в самом названии: это измеритель электрического потенциала. В электрических схемах потенциометр обозначается следующим образом: стандартное обозначение резистора, но со стрелкой, символизирующий подвижный контакт.

Если на верхний вывод потенциометра подать напряжение, скажем, 12 В, а нижний соединить с массой, то при перемещении полозка потенциометра напряжение между массой и сигнальным выводом будет изменяться от нуля до 12 В. Это в идеальном случае, в реальности же напряжение не будет доходить до нуля и до 12 В. Конструктивно датчик представляет собой резистивную дорожку в форме дуги или подковы, по которой перемещается ползунок. Один конец резистивной дорожки подключается к массе, на другой подается питающее напряжение. С ползунка снимается выходной сигнал.

Такой потенциометр использовался когда-то давно на радиоэлектронной аппаратуре для регулировки громкости звука: на него подавалось напряжение звуковой частоты, а с полозка оно снималось и шло на усилитель. В итоге, вращая ручку регулятора, можно было установить желаемый уровень громкости.

Где такой датчик можно применять в автомобиле?

Совершенно очевидно, его можно использовать там, где необходимо измерить пространственное положение какого-либо узла. Не важно, какого именно. Если узел подвижный, если он перемещается и занимает различные положения, а нам необходимо это положение определить, то практически повсеместно для этого используются датчики потенциометрического типа.

Классический пример датчика положения – указатель уровня топлива в баке. Поплавок с рычагом, установленный на шарнир и имеющий возможность перемещаться в одной плоскости. Рычаг соединен с полозком потенциометрического датчика. Напряжение с полозка подается на панель приборов и отклоняет стрелку указателя. Нужно отметить, что такая схема работы указателя уровня топлива уже весьма устарела и на большинстве современных автомобилей, оснащенных электронной панелью приборов, не применяется.

Диагностика датчиков электронных систем управления автомобилей

Где датчики такого типа используются на двигателе? Перечислим основные области применения:

  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик положения педали акселератора (ДППА);
  • датчик положения клапана рециркуляции отработанных газов;
  • датчик объемного расхода воздуха флюгерного типа;
  • датчик положения заслонок впускного коллектора.

Перечислено далеко не все. Одним словом, везде, где нужно иметь информацию о пространственном положении узла, применяются датчики потенциометрического типа.

Методы диагностики таких датчиков рассмотрим на примере датчика положения дроссельной заслонки. Он устанавливается на дроссельном узле и преобразует в напряжение текущее положение дроссельной заслонки. На датчик подается напряжение 5 В с ЭБУ, но конструктивно датчик выполнен таким образом, что напряжение на нем никогда не будет равно 0 или 5 В. Это сделано для того, чтобы ЭБУ мог контролировать цепь датчика и различать нулевое положение и короткое замыкание сигнальной цепи на массу либо напротив, положение максимального открытия дросселя и замыкание на питающее напряжение 5 В. Поэтому в реальности напряжение на датчике изменяется не от 0 до 5 В, а от 0.3..0.5 В до 4.5..4.7 В.

Проверить работоспособность датчика можно двумя способами:

  1. Сканером. Для выполнения проверки нужно подключить сканер, войти в режим «Поток данных» и найти в списке напряжение на датчике. Затем, медленно поворачивая дроссельную заслонку от закрытого до полностью открытого состояния, контролировать численное значение напряжения. Оно должно нарастать плавно, без падений до нуля или бросков до максимального значения. Как вариант, можно оценивать не напряжение, а рассчитанное блоком положение заслонки в процентах. Опять-таки, количество процентов должно расти плавно, без хаотических появлений 0% и 100%. Следует отметить, что вследствие конечной скорости обмена между ЭБУ и сканером при такой методике проверки возможен пропуск дефектного места на резистивной дорожке датчика.
  2. Мотортестером. Измерение выполняется в режиме самописца. Щупы мотортестера необходимо подключить к массе и сигнальному выводу датчика. Включить зажигание. Плавно перемещая дроссельную заслонку, наблюдать за осциллограммой. Проверка мотортестером является наиболее достоверной, позволяет обнаружить малейшие нарушения резистивного слоя, и для полноценной диагностики датчика необходимо отдавать предпочтение именно ей.

Рассмотрим несколько примеров осциллограмм исправных и неисправных датчиков потенциометрического типа.

Диагностика датчиков электронных систем управления автомобилей

Осциллограмма исправного датчика. Напряжение нарастает плавно, без скачков и провалов.

Диагностика датчиков электронных систем управления автомобилей

Датчик неисправен. Имеется износ резистивного слоя, приводящий к небольшим скачкам напряжения.

Диагностика датчиков электронных систем управления автомобилей

Сильный износ резистивного слоя. Броски напряжения достигают максимально возможного.

Рассказать о диагностике всех типов датчиков в рамках одной статьи невозможно. Все тонкости и нюансы диагностики датчиков термоанемометрического, терморезистивного, пьезоэлектрического и других подробно рассмотрены в обучающем курсе «Диагностика датчиковой аппаратуры»

Источник Источник http://k-a-t.ru/PM.01_mdk.01.02/9_diagnostika_datchiki_1/index.shtml
Источник http://altay-krylov.ru/ch_diagnostik_datch_el.html
Источник Источник Источник Источник http://pakhomov-school.ru/articles/diagnostika/datchiki-sistem-upravleniya-dvigatelem/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Автомобильные аккумуляторы - все, что нужно знать о них

Автомобильные аккумуляторы — все, что нужно знать о них

Автомобильные аккумуляторы являются одним из наиболее важных компонентов любого транспортного средства. Они обеспечивают энергией все электрические устройства автомобиля, от запуска двигателя до подачи энергии на освещение и радио. В данной статье мы рассмотрим значимость аккумуляторов для автомобилей, их основные характеристики и важность правильного выбора, а также узнаем о предложениях по приобретению аккумуляторов в городе Казань. […]

Тюнинг впускной системы для улучшения производительности автомобиля

Тюнинг впускной системы для улучшения производительности автомобиля

В мире автомобильного тюнинга существует множество способов улучшить производительность автомобиля. Один из самых важных аспектов тюнинга — это оптимизация впускной системы. В этой статье мы рассмотрим значимость тюнинга впускной системы, основные компоненты этого процесса и преимущества, которые он может принести владельцу автомобиля. Значение впускной системы в автомобильном тюнинге Впускная система играет ключевую роль в работе […]

Яндекс.Метрика