Реферат: Система зажигания карбюраторных двигателей

Реферат: Система зажигания карбюраторных двигателей

Тема: Система зажигания карбюраторных двигателей

1 Общие сведения

2 Катушка зажигания

4 Свечи зажигания

5 Замок зажигания

6 Схема и принцип действия батарейной системы зажигания

7 Установка зажигания

1 Общие сведения

Система зажигания служит для обеспечения надежного воспламенения горючей смеси в цилиндрах двигателя в нужный момент и изменения момента зажигания (угла опережения) в зависимости от частоты вращения коленчатого вала и нагрузки двигателя.

Развитие современных карбюраторных двигателей связано с повышением их степени сжатия, увеличением частоты вращения и числа цилиндров, повышением экономичности и срока службы, снижением токсичности отработавших газов и понижением температуры пуска холодного двигателя. Повышение степени сжатия требует увеличения напряжения, подводимого к свече, а увеличение числа цилиндров и частоты вращения — увеличения числа искр в единицу времени.

Современная система зажигания должна обеспечивать надежное искрообразование до 20 000 искр в минуту. Повышение экономичности двигателя требует от системы зажигания увеличения воздушного зазора в свече, увеличения энергии и продолжительности искры, что обеспечивает надежность воспламенения бедных смесей (при коэффициенте избытка воздуха а = 1,1—1,2) и надежный пуск холодного двигателя.

Все элементы системы зажигания должны надежно работать с минимальным уходом в течение срока службы двигателя до капитального ремонта.

Систему зажигания характеризуют следующие основные параметры:

— коэффициент запаса по вторичному напряжению;

— энергия и продолжительность искрового разряда;

— угол опережения зажигания.

Пробивное напряжение воздушного зазора свечи зависит от следующих факторов:

— давления в камере сгорания в момент искрового пробоя;

— температуры среды и электродов свечи;

— зазора между электродами свечи, формой, износом и материалом электродов;

— скоростью нарастания напряжения на электродах свечи;

— состава и скорости движения рабочей смеси в зоне искрового промежутка свечи;

— полярности центрального электрода.

В течение первых 2000 км пробега нового автомобиля пробивное напряжение увеличивается на 20—25% за счет округления кромок электродов свечи; в дальнейшем увеличение пробивного напряжения свечи происходит за счет износа электродов и увеличения зазора, что требует проверки и регулировки зазора в свечах.

Наибольшее значение пробивного напряжения наблюдается при пуске и разгоне двигателя, наименьшее — при работе на устоявшемся режиме при максимуме мощности.

Существенное влияние на мощность, экономичность и токсичность двигателя оказывает момент зажигания, обеспечивающий наилучшие показатели двигателя.

По современным представлениям момент зажигания должен выбираться, учитывая частоту вращения, нагрузку, температуру охлаждающей жидкости, температуру всасываемого воздуха, атмосферное давление, состав выхлопных газов (состав смеси а = 1), режим пуска двигателя, скорость изменения положения дроссельной заслонки (разгон, замедление автомобиля).

Выпускаемые нашей промышленностью системы зажигания имеют регулировку момента зажигания по частоте вращения и нагрузке двигателя (центробежный и вакуумный регуляторы).

На автомобильных карбюраторных двигателях широко применяют батарейную и контактно-транзисторную системы зажигания.

Прежде чем переходить к рассмотрению различных систем зажигания, рассмотрим основные приборы, узлы, детали, применяемые в этих системах.

2 Катушка зажигания

Катушка зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения (с 12 В до 20—24 тыс. В). Она состоит из следующих основных частей (рис. 1): сердечника, первичной обмотки из толстого изолированного провода диаметром 0,8 мм, картонной трубки, вторичной обмотки, состоящей из 18—20 тыс. витков тонкого провода, железного корпуса с магнитопроводами, карболитовой крышки, клемм и дополнительного сопротивления. Вторичная обмотка изолирована от первичной слоем изоляции. Концы первичной обмотки выведены на клеммы карболитовой крышки. Один конец вторичной обмотки соединен с первичной обмоткой, а второй выведен на центральную клемму карболитовой крышки.

Сердечник изготовляют из отдельных изолированных друг от друга полосок трансформаторной стали, чтобы не допустить образования вихревых токов. Нижний конец сердечника установлен в фарфоровый изолятор. Внутри катушка заполнена трансформаторным маслом. Добавочное сопротивление состоит из спирали, керамических гнезд и двух шин. Величина сопротивления колеблется от 0,7 до 4 Ом. Один конец соединен шиной с клеммой ВК, а другой с клеммой ВК-Б.

На малых оборотах коленчатого вала двигателя контакты прерывателя сравнительно продолжительное время находятся в замкнутом состоянии, сила тока в первичной цепи возрастает, сопротивление нагревается, увеличивается сопротивление в цепи, в катушку зажигания поступает ток небольшой величины, этим она предохраняется от перегрева.

Реферат: Система зажигания карбюраторных двигателей

Рис. 1. Катушка зажигания

Когда число оборотов коленчатого вала двигателя увеличивается, время сомкнутого состояния контактов уменьшается, нагрев и добавочное сопротивление уменьшаются, что препятствует понижению напряжения во вторичной цепи.

При включении стартера сопротивление закорачивается и пуск двигателя облегчается.

На рисунке 2 показана электрическая схема катушки зажигания. Катушки зажигания различных типов почти одинаковы и отличаются одна от другой:

— конструкции отдельных узлов и деталей;

Реферат: Система зажигания карбюраторных двигателей

Электрическая схема катушки зажигания:

1 — вторичная обмотка;

2 — вывод высокого напряжения;

3 — добавочное сопротивление;

4 — первичная обмотка

3 Прерыватель-распределитель

Прерыватель-распределитель служит для прерывания тока в первичной цепи катушки зажигания, распределения высокого напряжения по цилиндрам двигателя и изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала и нагрузки двигателя. Прерыватель-распределитель представляет собой устройство, состоящее из следующих конструктивных элементов: прерывателя, распределителя, центробежного регулятора, вакуумного регулятора, октан-корректора, конденсатора.

Большинство типов прерывателей-распределителей по конструкции основных узлов и деталей почти одинаковы. Они различаются лишь:

— числом размыкания контактов за один оборот;

— габаритными и установочными приборами;

— отдельными конструктивными особенностями. На рисунке 3 показано устройство прерывателя-распределителя Р4-Д двигателя ЗИЛ-130.

Реферат: Система зажигания карбюраторных двигателей

Рис. 3. Прерыватель-распределитель Р4-Д:

1 — ведущий валик; 2 — опорная пластина; 3 — фильц; 4 — ротор; 5 — крышка; 6 — клемма высокого напряжения; 7 — пружина контактного уголька; 8 — контактный уголек; 9 — защелка крышки; 10 — центробежный регулятор; 11 — вакуумный регулятор; 12 — регулировочные гайки октан-корректора; 13 — регулировочный винт (эксцентрик); 14 — рычажок-прерыватель; 15— винт крепления пластины неподвижного контакта; 16 — фильц смазки кулачка; 17— клемма прерывателя; 18 — провод изолированный; 19 — провод «массы».

В чугунном корпусе на двух медно-графитовых втулках вращается ведущий валик. Втулки смазываются через колпачковую масленку, ввернутую в корпус распределителя. На верхний конец валика надета втулка с восьмигранным кулачком, которая смазывается с помощью фильца.

В корпусе неподвижно установлена опорная пластина прерывателя, в которой укреплена наружная обойма шарикового подшипника. На внутреннюю обойму подшипника напрессована пластина, на которой смонтирован прерыватель и устройство для регулировки зазора между контактами. Пластина может поворачиваться вокруг оси кулачка тягой вакуумного регулятора. На рисунке 4 более наглядно показано устройство прерывателя.

Реферат: Система зажигания карбюраторных двигателей

Рис. 4. Прерыватель

Контакты прижаты друг к другу специальной пластинчатой пружиной.

При набегании выступов кулачковой шайбы на подушечку, рычажок подвижного контакта поворачивается на некоторый угол вокруг оси и контакты размыкаются. Клемма низкого напряжения соединена с рычажком прерывателя гибким изолированным проводом, а подвижная пластина с неподвижной гибким неизолированным проводом, что предохраняет смазку подшипника от разрушения.

Большое влияние на работу зажигания оказывает зазор между контактами прерывателя. Он должен быть 0,35—0,45 мм.

Если зазор будет большим, то время замкнутого состояния контактов уменьшится и сила тока в первичной обмотке катушки зажигания не успеет возрасти до требуемой величины и, как следствие этого, ЭДС вторичной цепи будет недостаточной. Кроме того, на больших оборотах коленчатого вала будут возникать перебои в работе двигателя.

При малом зазоре происходит сильное искрение между контактами, их обгорание и, как следствие, перебои на всех режимах работы двигателя.

Распределитель установлен сверху на корпусе прерывателя и состоит из ротора и крышки (рис. 5). Ротор изготовлен в виде грибка из карболита, сверху в него вмонтирована контактная пластина. Крепится ротор на выступе кулачка. Крышка распределителя изготовлена также из карболита. На ее наружной части по окружности выполнены гнезда по числу цилиндров для крепления проводов высокого напряжения к свечам зажигания. В середине крышки размещено гнездо для крепления прохода высокого напряжения от катушки зажигания.

Внутри против каждого гнезда расположены боковые контакты, а в центре помещен угольный контакт с пружиной для соединения центрального гнезда с контактной пластиной ротора.

Реферат: Система зажигания карбюраторных двигателей

Рис. 5. Распределитель

Крышка крепится на корпусе прерывателя двумя пружинными защелками. Ротор, вращающийся вместе с кулачком, соединяет поочередно центральный контакт с боковыми контактами, замыкая цепь высокого напряжения через свечи тех цилиндров двигателя, где в данный момент должно происходить воспламенение рабочей смеси.

Центробежный регулятор (рис. 6) служит для изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя. На ведущем валике закреплена пластина с осями грузиков. Грузики связаны между собой пружинами. На каждом грузике имеется штифт, входящий в прорези пластины, укрепленной на втулке кулачка. Привод кулачка осуществляется от валика через ось грузика. С увеличением числа оборотов грузики под действием центробежных сил расходятся, гптифты, двигаясь в пазах пластины, поворачивают ее и связанный с ней кулачок сдвигается в сторону вращения ведущего валика. В результате кулачок раньше размыкает контакты прерывателя и угол опережения зажигания увеличивается.

Реферат: Система зажигания карбюраторных двигателей

Рис. 6. Устройство центробежного регулятора

1 — кулачок; 2 — грузик; 3 — пластина кулачка; 4 — ведущий валик; 5 — штифт; 6 — пружина; 7 — ось грузика.

Положение грузиков:

I — на холостом ходу двигателя;

II — при максимальной частоте вращения вала двигателя

Вакуумный регулятор (рис. 7) служит для изменения угла опережения зажигания в зависимости от нагрузки двигателя. Вакуумный регулятор обеспечивает также снижение расхода топлива, особенно при работе двигателя на малых и средних нагрузках. Вакуумный регулятор работает независимо от центробежного регулятора.

Вакуумный регулятор выполнен в виде камеры, которая диафрагмой разделена на две части.

Одна часть трубопроводом соединена со смесительной камерой карбюратора, а другая с окружающей средой.

В той части камеры, которая соединена с карбюратором, установлена специальная пружина, которая регулируется шайбами.

Диафрагма соединена тягой с подвижной пластиной прерывателя.

Реферат: Система зажигания карбюраторных двигателей

Рис. 7. Устройство вакуумного регулятора

1 — крышка корпуса; 2 — регулировочная прокладка; 3 — уплотнительная прокладка; 4 — штуцер крепления трубки; 5 — трубка; 6 — пружина; 7 — диафрагма; 8 — корпус регулятора; 9 —тяга; 10 — ось тяги; 11 —подвижная пластина прерывателя;

I —положение диафрагмы вакуумного регулятора:

а — нагрузка на двигатель больше, б — нагрузка меньше

При большом открытии дроссельной заслонки вакуумный регулятор не работает.

С уменьшением открытия дроссельной заслонки разряжение в смесительной камере увеличивается и от давления наружного воздуха диафрагма прогибается, заставляя перемещаться тягу. Эта тяга поворачивает подвижную пластину прерывателя в сторону, противоположную направлению вращения валика, т. е. в сторону более раннего зажигания.

Для уточнения угла опережения зажигания в зависимости от качества применяемого топлива (октанового числа) служит октан-корректор , расположенный на корпусе распределителя (рис. 8).

Он состоит из двух пластин: верхней и нижней. Верхняя пластина закреплена на корпусе распределителя, а нижняя — на блоке двигателя.

Закрепленный на блоке двигателя распределитель можно повернуть относительно валика с помощью регулировочных гаек. На нижней пластине имеются деления, а конец верхней пластины выполнен в виде стрелки. Каждое деление шкалы октан-корректора равно 2° поворота коленчатого вала.

Все три регулятора работают независимо один от другого. Изменение угла опережения зажигания, осуществляемое каждым регулятором, суммируется.

Реферат: Система зажигания карбюраторных двигателей

Рис. 8. Распределитель зажигания

1 — гайки октан-корректора; 2 — винт крепления распределителя к корпусу привода; 3 — колпачковая масленка; 4 — конденсатор; 5 — регулировочный эксцентриковый винт; 6 — стопорный винт

Для уменьшения искрения на контактах прерывателя применяют конденсаторы.

Конденсатор (рис. 9) состоит из корпуса, внутри которого размещены свернутые рулоном две полосы алюминиевой фольги, изолированные друг от друга специальной бумагой. Одна из лент присоединена к «массе», а другая проводом к изолированному рычажку прерывателя. В последнее время применяют малогабаритные, герметизированные конденсаторы, у которых на бумагу, пропитанную маслом, напилен тонкий слой олова, а поверх его тонкий слой цинка. Крепится конденсатор на корпусе прерывателя снаружи или на подвижном диске.

Конденсаторы, устанавливаемые внутри корпуса прерывателя-распределителя, имеют меньшие размеры и обладают свойством самовосстанавливаться при пробое.

Реферат: Система зажигания карбюраторных двигателей

Рис. 9. Конденсатор

а — большого габарита; б — малого габарита

4 Свечи зажигания

Свеча зажигания (искровая) служит для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя.

Свеча зажигания (рис. 10) состоит из корпуса, центрального электрода с изолятором и бокового электрода, приваренного к корпусу свечи.

Устройство искровых зажигательных свечей различных марок практически одинаково. Они отличаются:

Свеча при работе двигателя подвержена высоким тепловым, электрическим, механическим и химическим нагрузкам.

Поверхность свечи, ввернутая в камеру сгорания, испытывает давление до 12 МПа (120 кгс/см 2 ).

Реферат: Система зажигания карбюраторных двигателей

Рис. 10. Свеча зажигания

Свеча зажигания состоит:

3 — центральный электрод;

4 — боковой электрод.

В процессе работы двигателя на части свечей, расположенных в камере сгорания, попадает масло, которое, сгорая, образует нагар, шунтирующий искровой зазор в свече. Это приводит к утечке энергии и снижению вторичного напряжения. Энергия может также утекать по наружной поверхности изолятора, если она загрязнена или покрыта влагой.

Нагар на тепловом конусе изолятора исчезает при нагреве его до температуры 400—500° С. Эта температура самоочищения свечи . Если температура теплового конуса изолятора превысила 850—900° С, может возникнуть калильное (напряжение) зажигание.

На рисунке 11 показана зависимость тепловой характеристики свечи от размеров теплового конуса изолятора.

Реферат: Система зажигания карбюраторных двигателей

Рис. 11. Зависимость тепловой характеристики свечи (калильного числа) от размеров теплового конуса изолятора

125, 145, 175, 225, 240 — калильные числа по Bosch (ФРГ);

10, 14,17, 23, 26 — калильные числа по ГОСТ 2043—74.

Чрезмерный нагрев свечи приводит к разрушению изолятора, а переохлаждение — к забрызгиванию электродов свечи маслом и обильному образованию нагара.

В условном обозначении свечей зажигания цифры и буквы обозначают: первая А — резьба на корпусе М 14 × 1,25 или М — резьба на корпусе
М 18 × 1,65, вторые одна или две цифры — калильное число. Согласно ГОСТу, калильным числом называется отвлеченная величина, пропорциональная среднему индикаторному давлению, при котором во время испытания свечи на моторной тарировочной установке в цилиндре двигателя начинает появляться калильное зажигание. Калильные числа могут иметь следующие значения: 8, 11, 14, 17, 20, 23 и 26. Далее буквы Н — длина резьбовой части корпуса 11 мм (Д — длина резьбовой части корпуса 19 мм), В — выступающие теплового конуса изолятора за торец корпуса, Т — герметизация по соединению изолятор — центральный электрод термоцементом.

Длину резьбовой части корпуса 12 мм, отсутствие выступления теплового конуса за торец корпуса и герметизацию по соединению изолятор — центральный электрод иным герметикой, кроме термоцемента, не обозначают. Пример условного обозначения свечи зажигания с резьбой на корпусе М 14 × 1,25, калильным числом 20, длиной резьбовой части корпуса 19 мм, имеющей выступание теплового конуса за торец корпуса: А20ДВ.

Большое влияние на работу свечи зажигания имеет зазор между центральным и боковым электродами. Заводы рекомендуют следующие зазоры: ЗИЛ-130 — 0,6—0,75; ГАЗ-31 — 0,8—0,9 мм.

Уменьшение зазора против нормы вызывает обильное нагарообразование на электродах свечи зажигания и перебои в ее работе. При большом зазоре из-за повышения сопротивления ухудшаются условия искрообразования, отчего также будут возникать перебои в работе двигателя.

Регулируют зазор подгибанием бокового электрода, а его величину проверяют щупом (рис. 12). Центральный электрод подгибать нельзя, так как разрушается керамическая изоляция и свеча зажигания отказывает в работе.

Величина искрового зазора между электродами свечи зависит от степени сжатия рабочей смеси. Чем выше степень сжатия, тем меньше зазор свечи.

Реферат: Система зажигания карбюраторных двигателей

Рис. 12. Регулировка зазора между электродами свечи зажигания

а — проверка; б — регулировка

5 Замок зажигания

Замок-выключатель зажигания и стартера (рис. 13) служит для включения и выключения системы зажигания, стартера, контрольно-измерительных приборов, радиоприемника и других приборов электрооборудования автомобиля, трактора. Он состоит из замка и выключателя. Ключ 7, вставленный в барабан 6 замка, утапливает замочные пластины 5, удерживающие от проворачивания барабан и связанный с ним ротор 3. При повороте ключа подвижный контакт 9 соединяет между собой центральный зажим 10 (AM) , который связан с источником питания, и контакты 11, 12, 13 , соединенные соответственно с клеммами ПР, КЗ и СТ.

Ротор 3 и барабан 6 установлены в корпусе 4, который с одной стороны закрыт карболитовой крышкой 1, с выводными клеммами, а с другой стороны — крепящей гайкой 8. Во включенном и выключенном положениях ротор замка удерживают фиксаторы 2, шарики которых под действием пружины входят в треугольные пазы корпуса.

Ротор выключателя может занимать три положения. В первом положении (ключ повернут вправо) включены зажигание, радиоприемник и приборы. При дальнейшем повороте ключа вправо (второе положение) включаются зажигание, стартер, контрольно-измерительные приборы. В этом положении ключ необходимо удерживать рукой. Третье положение (поворот ключа влево) соответствует включению радиоприемника, магнитофона на стоянке.

Реферат: Система зажигания карбюраторных двигателей

Рис. 13. Выключатель зажигания и стартера и схема соединения клемм

6 Схема и принцип действия батарейной системы зажигания

Батарейная система зажигания состоит (рис. 14) из катушки зажигания 3, прерывателя-распределителя 5, искровых свечей 4 и выключателя зажигания 1. Система зажигания получает питание от аккумуляторной батареи 2 или генератора.

В системе батарейного зажигания имеются две цепи —

— цепь низкого напряжения

— цепь высокого напряжения.

В цепь низкого напряжения входят источник тока, выключатель зажигания, первичная обмотка катушки зажигания с дополнительным сопротивлением и прерыватель.

Цепь высокого напряжения состоит из вторичной обмотки катушки зажигания, распределителя, проводов высокого напряжения, свечей зажигания.

Реферат: Система зажигания карбюраторных двигателей

Рис. 14. Схема батарейного зажигания

Схема батарейного зажигания состоит:

1 — выключатель зажигания; 2 — аккумуляторная батарея; 3 — катушка зажигания; 4 — свечи зажигания искровые; 5 — прерыватель-распределитель; 6 — ротор; 7 — кулачок; 8 — контакты прерывателя; 9 — конденсатор; 10 — первичная обмотка; 11 — вторичная обмотка; 12 — контакты выключения дополнительного резистора (устанавливаются в реле стартера);

RД — добавочный резистор (вариатор);

RУ — сопротивление утечки (нагар) (в скобках указана новая маркировка клемм катушки зажигания).

При включенном замке зажигания и замкнутых контактах прерывателя ток от положительной клеммы аккумуляторной батареи пойдет через добавочное сопротивление в первичную обмотку катушки зажигания, создавая в ней магнитное поле. Если контакты разомкнуть, то магнитное поле исчезнет. Вследствие этого в витках первичной и вторичной обмоток будет возникать ЭДС. Число витков во вторичной обмотке значительно больше, чем в первичной (12—18 тыс.), поэтому в ней индуктируется ЭДС около 20000 В, создающая высокое напряжение на электродах зажигательной свечи. Под действием высокого напряжения между электродами свечи возникнет искровой разряд, воспламеняющий рабочую смесь в цилиндре двигателя. Величина индуктируемой во вторичной обмотке ЭДС будет тем больше, чем больше величина тока в первичной обмотке в момент размыкания контактов прерывателя, чем больше коэффициент трансформации (отношение числа витков первичной обмотки к числу витков вторичной обмотки), чем больше скорость размыкания контактов.

Ток высокого напряжения проходит по следующему пути: из вторичной обмотки через вывод ВН и уголек крышки распределителя на электрод ротора, откуда через искровой промежуток 0,2—0,5 мм на один из электродов крышки распределителя и далее по проводу к центральному электроду зажигательной свечи.

Пробивное напряжение не постоянно и зависит от многих факторов. Основными из них являются: величина зазора между электродами свечи, температура электродов свечи и горючей смеси, давление и форма электродов. У двигателя, работающего на больших частотах вращения с полной нагрузкой, пробивное напряжение минимальное (4—5 тыс. В), а в режимах холостого пуска двигателя — оно максимально.

При пуске двигателя катушки зажигания питаются от аккумуляторной батареи, напряжение которой понижено из-за потребления стартером большого тока. Для устранения этого явления в некоторых катушках зажигания применяется добавочный резистор.

Момент зажигания рабочей смеси.

Сгорание рабочей смеси в цилиндре двигателя происходит не мгновенно, а в течение определенного времени. Мощность, экономичность, нагрев, износ двигателя и токсичность отработавших газов во многом зависят от выбора момента зажигания рабочей смеси в цилиндре двигателя.

Момент зажигания рабочей смеси определяется по углу поворота коленчатого вала двигателя от момента проскакивания искры до положения, при котором поршень находится в ВМТ. Этот угол называется углом опережения зажигания .

На рисунке 15 показано изменение давления в цилиндре двигателя в зависимости от угла опережения зажигания. При раннем зажигании (большой угол опережения зажигания, кривая 1) происходит резкое возрастание давления в цилиндре двигателя, препятствующее движению поршня.

Реферат: Система зажигания карбюраторных двигателей

Рис. 15. Изменение давления в цилиндре двигателя в зависимости от момента зажигания состоит

1 — раннее зажигание,

2 — нормальное зажигание,

3 — позднее зажигание,

а — момент зажигания

Это приводит к снижению мощности и экономичности двигателя и увеличению токсичности, а также к его перегреву и появлению детонационных стуков (зубцы на кривой 1). Также ухудшается приемистость и наблюдается неустойчивая работа двигателя в режиме холостого хода.

При позднем зажигании (малый угол опережения зажигания, кривая 3) горение смеси происходит после ВМТ, когда поршень идет уже вниз. Давление газов не сможет достигнуть необходимой величины, мощность и экономичность двигателя снижаются. Наблюдается перегрев двигателя, так как температура выхлопных газов повышается. Оптимальное протекание процесса сгорания рабочей смеси в цилиндре двигателя происходит в том случае, когда угол опережения зажигания соответствует кривой 2.

Из этого следует, что угол опережения зажигания должен регулироваться автоматически с учетом скоростного и нагрузочного режимов работы двигателя.

Это и выполняют центробежный и вакуумный регуляторы опережения зажигания, установленные в прерывателе-распределителе.

7 Установка зажигания

Учитывая, что воспламенение рабочей смеси должно происходить в тот момент, когда поршень каждого цилиндра находится в ВМТ конца такта сжатия, необходимо, чтобы прерыватель-распределитель обеспечивал образование искры в свече зажигания в строго определенные моменты.

Для обеспечения необходимого взаимодействия деталей прерывателя-распределителя и его привода нужно установить зажигание.

Зажигание устанавливают по первому цилиндру, когда поршень находится в ВМТ конца такта сжатия. Для определения такта сжатия вывертывают свечу зажигания первого цилиндра и закрывают отверстие пробкой. Если при медленном вращении коленчатого вала пробка выталкивается или обнаруживается шипение сжимаемого воздуха, то это свидетельствует о том, что в цилиндре происходит такт сжатия. Для точной установки поршня ВМТ в автомобиле ГАЗ-53А необходимо совместить метку на шкиве коленчатого вала с центральной риской указателя (рис. 16).

В двигателе автомобиля ЗИЛ-130 ВМТ такта сжатия определяется по совпадению отверстия на шкиве с меткой ВМТ на указателе датчика ограничителя числа оборотов (рис. 16 б). Затем нужно провернуть коленчатый вал против часовой стрелки так, чтобы отверстие в шкиве совпало с цифрой 9 на указателе.

Реферат: Система зажигания карбюраторных двигателей

Рис. 16. Установочные метки для установки зажигания в двигателе

а — ЗМЗ-53; б — ЗИЛ-130

Перед установкой прерывателя-распределителя в гнездо на двигателе нужно его проверить, очистить и отрегулировать зазор. Стрелку октан-корректора установить на 0, а корпус прерывателя нужно установить в гнезде так, чтобы привод совпадал с приводом масляного насоса. Штуцер вакуумного регулятора должен находиться против трубки.

Для определения начала размыкания контактов применяют контрольную лампу: один провод от нее присоединяют к «массе», а другой к клемме провода низкого напряжения. Момент начала размыкания контактов прерывателя устанавливают поворотом его корпуса против вращения кулачка до момента, когда загорится лампочка. Выключатель зажигания при этом должен быть включен. Корпус прерывателя закрепляют, устанавливают ротор и крышку распределителя. Боковой контакт, против которого устанавливается токоразносная пластина, соединяют со свечой первого цилиндра. Остальные контактные гнезда соединяются проводами со свечами зажигания согласно порядку работы цилиндров двигателя. При распределении проводов по свечам необходимо учитывать направление вращения ротора.

Проверяют правильность установки зажигания контрольной лампой. Правильность установки зажигания можно проверить и на ходу автомобиля. Для этого необходимо прогреть двигатель и, двигаясь на прямой передаче с небольшой скоростью, быстро нажать до отказа на педаль управления дросселем. При правильной установке зажигания должны слышаться слабые и прерывистые детонационные стуки, исчезающие после разгона. Если зажигание слишком раннее, стуки будут значительными, а если зажигание позднее, то детонационных стуков не будет.

Необходимо помнить , что при повороте корпуса распределителя в сторону вращения его ротора установка зажигания будет более поздней , а при повороте в противоположном вращению ротора — более ранней .

Установку зажигания корректируют при помощи октан-корректора.

Список литературы

1. Дмитриев А.В. Электрооборудование автомобилей, тракторов и комбайнов: Учебное пособие. — Челябинск: Юж.-Урал. кн. изд.-во, Юж.-Урал. изд.-торг, дом, 1999 — 199 с.

2. Дмитриев М.Н. Практикум по электрооборудованию тракторов, автомобилей, комбайнов. — М.: Колос, 1976.

3. Машков Е.А., Жалнин Э.В. Справочник комбайнера. — М.: Россельхозиздат, 1984.

4. Родичев В.А., Родичева Г.И. Тракторы и автомобили. — М.: Агропромиздат, 1987.

5. Родичев В.А., Родичева Г.И. Тракторы и автомобили. — М.: Агропромиздат, 1987.

6. Трактор «Кировец». — Ленинград: Колос, 1976.

7. Шаткус Д. И. Справочник по комбайнам «Нива» и «Колос».— М.: Колос, 1976.

Система зажигания автомобиля – особенности устройства и ремонта

Описание и особенности работы системы зажигания автомобиля: разновидности, неполадки, важные нюансы ремонта. Видео про систему зажигания.

Реферат: Система зажигания карбюраторных двигателей

  1. Предвестники зажигания
  2. Как работает система зажигания автомобиля
  3. Разновидности систем зажигания
    • Контактные системы зажигания
    • Бесконтактные системы зажигания
  4. Основные неполадки системы зажигания
  5. Порядок ремонта системы зажигания
  6. Видео про систему зажигания

«Из искры возгорится пламя». Этой крылатой фразой, вышедшей в своё время из-под пера поэта-декабриста Александра Одоевского, можно вкратце охарактеризовать принцип работы системы зажигания автомобиля. Саму искру продуцируют разряды в свечах, возникающие в определённые такты работы двигателя.

Сразу стоит отметить, что в дизельных моторах зажигание как таковое отсутствует – самовоспламенение горючей смеси там происходит во время её сжатия. А как функционирует СЗ в автомобилях, разъезжающих на бензине, об этом и пойдёт речь в обзоре.

Предвестники зажигания

Реферат: Система зажигания карбюраторных двигателей

В силовых установках, эксплуатировавшихся на заре автомобилестроения, таких как двигатель Даймлера или «полудизель», топливо на завершении этапа сжатия загоралось от раскалённой калильной головки, именуемой также калильной трубкой. Это устройство представляло собой отсек, соединённый с камерой сгорания.

Перед тем, как завести ретрокар, калильную головку следовало разогреть с помощью паяльной лампы, после чего этот прототип свечи зажигания обогревался за счёт тепла от воспламенения топлива при работе мотора. Такую конструкцию, выигрывающую простотой в сочетании с довольно небольшими габаритами, и сегодня можно встретить в различных авиационных, автомобильных и корабельных моделях.

Как работает система зажигания автомобиля

Реферат: Система зажигания карбюраторных двигателей

Однако по-настоящему на двигателях, потребляющих бензин, прижилась искровая СЗ, отличающаяся тем, что топливо при её работе воспламеняется с помощью разряда. Такого рода устройство представляет собой электроцепь, содержащую набор различных деталей, влияющих на работу всей силовой установки. К основным функциям системы зажигания относятся:

  • выдача импульса, когда поршень находится в готовом положении, и все клапаны цилиндра закрыты;
  • генерация разряда в нужное время и нужном цилиндре;
  • наделение искры достаточной мощностью для того, чтобы топливо загорелось;
  • обеспечение активации цилиндров мотора в нужном порядке.

Автомобильные СЗ бывают разных видов, но принцип их работы остаётся похожим. Датчик положения коленчатого вала отмечает позицию этой детали в момент включения первого цилиндра, тем самым устанавливая порядок срабатывания свечей в агрегате. Далее к процессу подключается управляющий элемент, активирующий индукционную катушку, которая при поддержке АКБ передаёт распределителю высоковольтный импульс. Наконец, электроэнергия добирается до свечи зажигания, устраивающей воспламенение в определённом цилиндре.

Важно, что вся эта конструкция функционирует при условии, что зажигание включено. То есть, ключ «даёт добро».

Разновидности систем зажигания

Реферат: Система зажигания карбюраторных двигателей

Существующие СЗ обычно разделяют на две группы:

  • контактные;
  • бесконтактные.

Они выполняют практически одинаковую работу: создание и транспортировка электроэнергии. Однако имеют отличия в методах управления током и доставки его к свечам зажигания, формирующим разряд. По способу накопления энергии СЗ подразделяются на:

  • транзисторные или индукторные, хранящие электричество в магнитном поле катушки зажигания, а в роли прерывателя использующие транзисторы;
  • менее распространённые тиристорные или конденсаторные, собирающие электроэнергию в конденсаторе, прерывателем у них служит тиристор.

Контактные системы зажигания

Реферат: Система зажигания карбюраторных двигателей

Их устройство относительно простое. Электроэнергия от АКБ передаётся на катушку, где образуется высоковольтный ток, перетекающий на механический распределитель. В цилиндры импульс поступает в соответствии с графиком их работы. Наконец, разряд добирается до нужной свечи зажигания.

Контактные СЗ могут быть разделены на две разновидности по способу добычи искры: батарейные и транзисторные. Первый вариант подразумевает, что в картере распределителя установлен механический прерыватель, разрывающий цепь для получения искры и замыкающий её для накопления энергии катушкой. В устройствах же второго типа вместо такого прерывателя установлен транзистор.

Зато устройства, использующие в качестве коммутатора один или несколько транзисторов по числу катушек, вообще не нуждаются в дополнительных конденсаторах. А всё потому, что в данном случае включение и выключение первичной обмотки индукционного элемента сопровождается низким напряжением.

Бесконтактные системы зажигания

Реферат: Система зажигания карбюраторных двигателей

У агрегатов такого типа вместо механического прерывателя устанавливаются разного рода датчики: индуктивный, оптический или Холла, работающие по бесконтактному методу. Они управляют транзисторным коммутатором.

Большинство современных машин оснащаются системами зажигания, в которых высоковольтный импульс генерируется и распределяется разными электронными элементами. Точностью определения момента поджигания топлива отличается микропроцессорная СЗ.

В бесконтактных системах применяются следующие индуктивные элементы:

  1. Одноискровые катушки, подключаемые к каждой свече персонально. Одним из преимуществ таких систем является возможность отключения конкретного цилиндра в случае поломки какой-нибудь катушки. Коммутаторы могут индивидуально взаимодействовать с каждой катушкой или же быть скомбинированы в группу. В некоторых автомобилях этот комплекс входит в состав электронного блока управления. Кабели высокого напряжения в подобных СЗ присутствуют.
  2. «Катушки на свечах», также обозначаемые как COP (Coil on Plug). Установка катушки над свечой зажигания позволяет системе обходиться без высоковольтных проводов.
  3. Двухискровые катушки DIS (Double Ignition System), способные взаимодействовать сразу с двумя свечами зажигания. Эти детали могут быть размещены над свечами или прямо на них, но в обоих случаях потребуется высоковольтный кабель.

Бесконтактным СЗ для нормальной работы требуются дополнительные датчики, которые фиксировали бы различные показатели, влияющие на угол опережения зажигания, а также частоту и силу импульса. Эти данные поступают в электронный блок управления, контролирующий работу системы согласно настройкам, установленным производителем.

СЗ электронного типа применимы как на инжекторных, так и на карбюраторных силовых установках, что является одним из их преимуществ перед контактными аналогами. Другой плюс – это более длительный период эксплуатации большинства деталей, входящих в электронную цепь системы.

Основные неполадки системы зажигания

Реферат: Система зажигания карбюраторных двигателей

Хотя электронная система зажигания и более надёжна по сравнению с устройством, которым оснащались классические ВАЗы, но и она порой ломается. Однако периодическая диагностика автомобиля поможет выявить неполадки в СЗ на ранних этапах и, как следствие, избежать дорогостоящего ремонта. Основные проблемы этого устройства связаны с выходом из строя следующих деталей электроцепи:

  • катушек индуктивности;
  • свечей зажигания;
  • высоковольтных проводов.

Хорошая новость состоит в том, что большинство неисправностей СЗ можно найти самостоятельно и устранить их путём замены сломавшегося элемента. Даже при визуальном осмотре устройства можно выявить некоторые неполадки в его работе. Например, повреждение изоляции высоковольтных проводов или образование нагара на контактах свечей.

Осциллограмма может продемонстрировать работу системы зажигания в динамике, что позволит выявить, например, межвитковое замыкание. При такой поломке время горения искры и её сила могут серьёзно снизиться. Среди других причин, приводящих к неисправностям СЗ, можно выделить следующие:

  • неправильное обслуживание автомобиля – нарушение регламента или некачественная проверка;
  • некорректная эксплуатация машины – например, использование плохого топлива или ненадёжных деталей;
  • негативное влияние внешних факторов: мокрая погода, сильная вибрация или перегрев.

Также сбои в работе бесконтактной системы зажигания могут быть следствием ошибок в электронном блоке управления или неполадками какого-нибудь важного датчика. Поэтому хотя бы раз в год рекомендуется проводить полную диагностику всей СЗ с выявлением ошибок ЭБУ или регулировкой системы, если она контактного типа.

Кстати, иногда система зажигания не запускается по довольно простой причине — неисправен замок. Он может просто износиться со временем, выйти из строя по причине небрежной эксплуатации или в результате неудачной попытки угона.

Порядок ремонта системы зажигания

Реферат: Система зажигания карбюраторных двигателей

Стоит сразу отметить, что большинство деталей системы зажигания неремонтопригодны. Катушки, свечи, конденсаторы, датчики, провода высокого напряжения – в случае поломки всё это меняется на новое. О том, что в СЗ что-то не то, говорят следующие признаки:

  • плохо заводится двигатель, особенно на холоде;
  • мотор нестабильно работает на холостом ходу;
  • снизилась мощность двигателя;
  • увеличился расход топлива.

Но нужно ли ждать, когда что-то сломается? Как и большинство автомобильных агрегатов, система зажигания требует планового ремонта. Периодичность этой процедуры связывается с пробегом:

Через 10 тыс. км проверяется прерыватель-распределитель. Его протирают, исследуют состояние диска и контактов, смазывают ось подвижного контакта. Через 20 тыс. км распределитель смазывают, используя маслёнку на его корпусе, проверяют контакты прерывателя и, если нужно, зачищают их. Также исследуют величину зазора между ними. Выворачивают свечи, очищают их, регулируют расстояние между электродами.

Через 30 тыс. км рекомендуется поставить новые свечи зажигания. Элементы СЗ тщательно протираются, проверяется надёжность креплений и состояние изоляции.

Заключение

Поскольку бесконтактные системы зажигания лишены подвижных деталей, поломки СЗ в современных автомобилях при их своевременной диагностике обнаруживаются реже, чем в старых машинах. Причём, некоторые внешние признаки неполадок в этом устройстве похожи на сигналы о неисправностях топливной системы. Потому, прежде чем браться за устранение предполагаемых неполадок с зажиганием, стоит обратить озаботиться состоянием других агрегатов транспортного средства.

Видео про систему зажигания:

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Реферат: Система зажигания карбюраторных двигателей

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Реферат: Система зажигания карбюраторных двигателей

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Реферат: Система зажигания карбюраторных двигателей

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

Реферат: Система зажигания карбюраторных двигателей

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Реферат: Система зажигания карбюраторных двигателей

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Реферат: Система зажигания карбюраторных двигателей

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

Реферат: Система зажигания карбюраторных двигателей

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Реферат: Система зажигания карбюраторных двигателей

Подходящие виды регулирования карбюратора:

  • “Винт количества” — функционирование на холостом ходу;
  • “Винт качества” — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Источник http://www.bestreferat.ru/referat-189319.html
Источник Источник http://fastmb.ru/autoremont/5277-sistema-zazhiganiya-avtomobilya-osobennosti-ustroystva-i-remonta.html
Источник http://avtodvigateli.com/vidy/benzinovyj/karbyuratornyj.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожее

Смазочные материалы: Виды, особенности и их значение в технике

Смазочные материалы: Виды, особенности и их значение в технике

Смазочные материалы являются неотъемлемой частью множества промышленных и бытовых процессов, обеспечивая бесперебойную работу механизмов и продлевая срок их службы. На странице https://www.cstore.ru/catalog/brand/hyundai-xteer вы можете узнать более подробную информацию. В этой статье мы рассмотрим основные виды смазочных материалов, их особенности и значение для сохранения работоспособности различного оборудования и техники. Что такое смазочные материалы и зачем они […]

Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

Квартиры от застройщика в Пензе. Ваш ключ к комфортной жизни

Покупка квартиры от застройщика в Пензе становится всё более популярным выбором среди жителей города. Основные преимущества квартиры от застройщика и такого выбора заключаются в следующем: Новая недвижимость: Приобретая квартиру от застройщика, вы получаете абсолютно новое жилье, где никто до вас не жил. Это значит, что все коммуникации, электропроводка и сантехника будут в идеальном состоянии, а […]